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Abstract—LoRa, designed for Low-Power, Wide-Area Networks
(LPWANS), is widely used in the Internet of Things (IoT). In
contrast, Wireless Personal Area Network (WPAN) technologies
like ZigBee struggle to connect directly to LPWANs due to their
limited communication range and differing modulation schemes.
ZigBee uses Offset Quadrature Phase-Shift Keying (OQPSK)
modulation, while LoRa employs Chirp Spread Spectrum (CSS)
modulation, complicating cross-technology communication. To ad-
dress this challenge, we propose a novel approach for seamless
physical-layer cross-technology communication between ZigBee
and LoRa networks, bridging the gap between short-range and
long-range communication technologies. We introduce ZigRa, a
communication method that leverages neural networks for ef-
ficient modulation translation between ZigBee’s IEEE 802.15.4
standard and LoRa’s CSS modulation. The core of ZigRa is a
deep learning model that adapts and optimizes the transformation
of ZigBee signals into ultra-narrowband single-tone sinusoidal
signals, which can be reliably detected by LoRaWAN base sta-
tions. Our solution enables ZigBee devices to seamlessly connect
to LoRa-based LPWANSs, overcoming modulation mismatches and
providing long-range connectivity. Extensive evaluations with both
USRP hardware and commercial devices demonstrate that ZigRa
achieves a frame reception rate exceeding 85% at distances up to
500 meters, significantly enhancing the interoperability and cover-
age of heterogeneous IoT networks.
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power wide-area networks, ZigBee.

Received 21 January 2025; revised 11 April 2025; accepted 11 June 2025.
Date of publication 17 June 2025; date of current version 3 October 2025.
This work was supported in part by Future Network Scientific Research Fund
Project under Grant FNSRFP-2021-YB-17 and in part by The Priority Academic
Program Development (PAPD) of Jiangsu Higher Education Institutions. An
earlier version of this work has been accepted by the International Conference
on Wireless Artificial Intelligent Computing Systems and Applications (WASA)
2024 [DOI: 10.1007/978-3-031-71464-1_10]. Recommended for acceptance by
F. Wang. (Corresponding author: Ye Liu.)

Demin Gao is with the College of Information Science and Technology &
Artificial Intelligence, Nanjing Forestry University, Nanjing 210037, China
(e-mail: dmgao@njfu.edu.cn).

Yongrui Chen is with the School of Electronic, Electrical and Communication
Engineering, University of Chinese Academy of Sciences, Beijing 100049,
China (e-mail: chenyr@ucas.ac.cn).

Ye Liu and Honggang Wang are with the Department of Graduate Com-
puter Science and Engineering, Katz School of Science and Health, Yeshiva
University, New York, NY 10016 USA (e-mail: liuyefancy @ gmail.com; Hong-
gang.wang @yu.edu).

Digital Object Identifier 10.1109/TMC.2025.3580396

, Member, IEEE, Ye Liu

, Senior Member, IEEE,
, Fellow, IEEE

1. INTRODUCTION

N RECENT years, the demand for efficient communication
I in IoT has grown significantly, driven by the need for long-
range, low-power wireless communication systems [2], [3], [4],
[5], [6]. Technologies such as LoRa (Long Range [7]) and
ZigBee have emerged as dominant solutions, each excelling in
different aspects of wireless communication [8]. While LoRa is
renowned for its long-range capabilities and robust signal trans-
mission over large distances [9], ZigBee offers high data rates
and low power consumption for short-range communications.
However, the two technologies typically operate in isolated
environments [10], with no seamless way to integrate them
for improved performance across various ranges and data rate
requirements.

The ability to combine the advantages of ZigBee and LoRa has
the potential to transform the way IoT devices communicate by
facilitating seamless CTC [11], [12]. This, however, presents a
significant challenge, as the two technologies are fundamentally
different in terms of modulation, signal processing, and operat-
ing conditions [13], [14]. A key obstacle lies in finding a practical
and efficient method for transmitting ZigBee signals in a manner
that LoRa receivers can interpret, thus enabling Physical-layer
CTC (PHY-CTC) [15], [16], which in heterogeneous IoT refers
to the ability of different systems to communicate and exchange
data seamlessly, despite using different technologies, protocols,
and standards [17]. The goal of CTC is to enable IoT devices
from various vendors with differing capabilities can communi-
cate and share information, thus providing a more comprehen-
sive and integrated IoT solution [18]. For example, a device using
the ZigBee protocol can directly communicate with another
device using the LoRaWAN protocol. This capability allows a
wide range of IoT devices to work together and share data, even
though they use different communication technologies.

Despite recent advances in CTC techniques that offer new
prospects for bridging the gap between ZigBee and LoRa, ex-
isting CTC methods fail to achieve directional communication
from ZigBee to LoRa due to the inherent asymmetry in the
CTC channel [19]. This has limited the practical deployment
of such systems. For example, the research in BLE2LoRa [20],
[21] focuses on finding a single-tone signal that exhibits clear
signal characteristics in the LoRa frequency domain. Specifi-
cally, BLE2LoRa [20], [21] identifies only two symbols in the
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ZigBee signal, expressed as e/2™/* and e 727/, These represent
a simplistic approach to signal mapping from ZigBee to LoRa.
However, when LoRa receives the ZigBee signal, the LoRa
device does not multiply it by adown-chirp, resulting in a limited
and narrow solution.

In this article, we introduce a novel approach that addresses
this challenge: Seamless physical-layer cross-technology com-
munication from ZigBee to LoRa (called ZigRa) via Neural
Networks, where we use machine learning, specifically neu-
ral networks, to facilitate the transformation of ZigBee signal
characteristics into a format that is compatible with LoRa’s
CSS modulation. This enables LoRa receivers to decode ZigBee
transmissions and effectively bridging the gap between the two
technologies at the physical layer.

Our contributions are summarized as follows:

e We propose an innovative approach that leverages neural
networks to bridge the physical-layer gap between ZigBee
and LoRa by mapping ZigBee signals to ultra-narrowband
single-tone sinusoidal signals required by LoRa receivers.

® We employ frequency peak positioning strategies to ensure
robust separation and minimize interference by carefully
designing the ZigBee sequences that their frequency peaks
are separated from the LoRa signal’s peaks.

e Extensive experiments were conducted using both uni-
versal software radio peripherals (USRP) hardware and
commercial off-the-shelf devices. The experimental results
show that ZigRa achieves a frame reception rate of over
85% at distances of up to 500 meters.

The structure of this paper is as follows. Section II presents
the preliminaries. Section III provides the motivation for our
research. Section IV gives an overview of ZigRa. Section V
details our proposed system design. Section VI, we provide
performance evaluation results for ZigRa. Section VII, we re-
view previous research on CTC for heterogeneous IoT systems.
Finally, Section VIII summarizes our conclusions and presents
directions for future research.

II. PRELIMINARIES
A. OQPSK Modulation

The PHY layer of the ZigBee transceiver employs OQPSK,
a digital modulation technique used in wireless communica-
tion [22]. It is a variant of QPSK, designed to reduce the
peak-to-average power ratio of the transmitted signal. OQPSK
encodes digital data onto a carrier signal by modulating both the
amplitude and phase of the carrier signal. In OQPSK, similar
to QPSK, the data stream s(k) is divided into two channels:
the in-phase (I) and quadrature (QQ). Specifically, two adjacent
digital bits are mapped to the I-phase and Q-phase of the or-
thogonal carrier. Then, for each digital bit, a two-stage linear
phase shift is applied. Since the two paths have a half-cycle
offset, only one path can experience a polarity reversal at any
one time. Consequently, the phase difference between adjacent
orthogonal carriers is always 90°, 180°, or 270°. This mapping
allows different digital bit sequences to be distinguished by
varying phase differences, enabling the receiver to differentiate
between data bits.
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TABLE I

KEY LORA PHYSICAL-LAYER PARAMETERS
Model Parameter Symbol Options
Frequency F 2.4 GHz
Spreading factor SF 5-12
Bandwidth BW(kHz) 812, 1625
Code rate CR 4/5
Cyclic Redundancy Check  CRC on or of

B. CSS Modulation

Semtech’s LoRa is a leading LPWAN technology that en-
compasses multiple wireless technologies and facilitates the
development of scalable IoT networks. Within the unlicensed
industrial, scientific, and medical (ISM) radio band, multiple
wireless technologies, including IEEE 802.15.4 (e.g., ZigBee
TI1352R [23]) and LoRaWAN (e.g., LoRa), coexist, especially
in the Sub-1 GHz ISM band [24]. LoRaBee [25], [26] achieves
data transmission from LoRa to ZigBee by embedding specific
bytes into the payload of genuine LoRa packets and utilizing
energy emission within the Sub-1 GHz bands. By leveraging,
LoRaBee achieves a throughput of up to 281.61 bps.

Originally intended for Sub-1 GHz band operation, LoRa
technology has incorporated 2.4 GHz LoRa transceivers since
2017, such as the SX1280/SX1281, which exhibit performance
comparable to their Sub-1 GHz counterparts (i.e., 470-510 MHz
for China, 433/868 MHz for the EU) [27]. Moreover, the SX1280
LoRa module has an extended communication range and is
resistant to interference in this commonly used band, as shown in
Table 1. Additionally, it can receive LoRa packets without strin-
gent duty cycle restrictions. At the same time, the maximum
available bandwidth has been augmented from 500 kHz to
1600 kHz, resulting in faster data rates (i.e., from 21 kbps to
70 kbps). As a result, 2.4 GHz LoRa technology has garnered
significant attention and offers broader support for IoT applica-
tions.

The use of chirp pulses in LoRa modulation enables efficient
data transmission over long distances while maintaining low
power consumption. Chirp signals are a type of continuous wave
whose frequency varies linearly over time. This linear frequency
variation results in a spread-spectrum signal that occupies a
wide bandwidth. In LoRa, two different chirps are used to
represent bit ‘0’ and bit ‘1°. These chirps are then transmitted
using frequency-shift keying (FSK) modulation [28], where
the frequency of the transmitted signal alternates between the
up-chirp and down-chirp frequencies.

III. MOTIVATION
A. Challenge

One of the key challenges in implementing ZigRa is the
inherent complexity in training deep neural networks to model
the mapping between two fundamentally different modulation
schemes: ZigBee’s Direct Sequence Spread Spectrum (DSSS)
and LoRa’s CSS. A particularly difficult aspect of this challenge
is that LoRa’s demodulation method is unique. When LoRa
receives a time-domain waveform, it needs to multiply it by
a falling edge before demodulating based on the frequency.
This specialized demodulation technique makes it extremely
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difficult to find a suitable ZigBee time-domain signal that aligns
with LoRa’s frequency-based demodulation requirements. The
neural network must be trained to not only to translate the
ZigBee signals into a format that can be interpreted by LoRa
receivers but also account for this additional step in LoRa’s
signal processing. Achieving accurate signal conversion while
respecting the intricacies of LoRa’s demodulation process adds
another layer of complexity to the solution.

Another challenge lies in the fact that the performance of
the neural network heavily depends on the quality and diver-
sity of the training dataset, which must cover a wide range of
real-world conditions, including varying channel characteristics,
interference levels, and noise types. Collecting and curating
such a dataset for training can be both resource-intensive and
time-consuming. Additionally, the real-time performance of the
model can be affected by the computational complexity re-
quired for signal processing and mapping, especially in resource-
constrained environments where power and processing capacity
are limited. Achieving both high accuracy in signal translation
and low latency for practical deployment remains a significant
challenge.

B. Opportunity

The ZigRa framework presents several promising opportu-
nities for advancing the interoperability of heterogeneous IoT
networks. AsIoT ecosystems continue to expand, the demand for
communication solutions that seamlessly connect devices across
different technologies-such as ZigBee, LoRa, and beyond-will
only grow. ZigRa offers a unique opportunity to unify short-
range and long-range communication networks by bridging the
gap between ZigBee and LoRa. This will enable devices in short-
range ZigBee networks to tap into the extensive coverage of
LoRanetworks, significantly enhancing the range and scalability
of IoT deployments. The flexibility of neural network-based
signal translation also opens up opportunities for future cross-
technology communication solutions, where new and emerging
wireless standards can be integrated with minimal hardware
changes, thereby reducing the time and cost required for IoT
integration.

Furthermore, the use of machine learning, particularly neural
networks, in cross-technology communication could pave the
way for smarter and more adaptive loT networks. By incorporat-
ing Al-driven algorithms, networks could dynamically optimize
communication parameters based on environmental conditions
and network load, thereby improving overall efficiency and
reliability. ZigRa’s approach also presents a clear pathway for
future research in cross-technology communication, enabling
the development of generalized models that could accommodate
a wide range of modulation schemes and protocols. This adapt-
ability can foster innovation in IoT applications, from smart
cities to industrial automation, where seamless communication
between a variety of devices, networks, and technologies is
essential for efficient operation. As the demand for scalable,
interoperable, and energy-efficient IoT networks grows, ZigRa’s
foundational approach can offer a solid framework for address-
ing these needs and expanding the possibilities of future IoT
applications.
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Fig. 1. Overview of ZigRa.

IV. ZIGRA IN A NUTSHELL

Fig. 1 depicts the ZigRa architecture and the data transmission
process from a ZigBee device to a LoRa device. This process
involves transmitting a ZigBee frame containing a chosen pay-
load and generating a specific signal using OQPSK modulation.
After receiving this signal, the LoRa device multiplies it by
the down-chirp in the time domain (details are provided in
Section II-A) and performs a Fast Fourier Transform (FFT)
analysis. This analysis yields a detected peak in the frequency
domain that corresponds to the ZigBee signal (assuming perfect
synchronization). By detecting this peak, the base station can
identify and track the ZigBee signal’s bit stream, decode it, and
reassemble it into ZigBee frames. This decoding process enables
the LoRa device to extract the original payload data transmitted
by the ZigBee device.

The key steps in this process include: i) ZigBee symbols
are synchronized with the LoRa (Section V-A). ii) The neural
network selects the most suitable payload by learning the rela-
tionship between the ZigBee signal and the LoRa demodulated
signal (Section V-B and Section V-C). iii) Preamble detection
for ZigRa (Section V-D). iv) LoRa receivers use the frequency-
domain peak obtained from FFT demodulation to detect and
decode the ZigBee signal (Section V-E). v) Configuration of
ZigBee signals (Section V-F).

V. SYSTEM DESIGN
A. ZigBee Symbols are Synchronized With the LoRa

To accurately emulate the signals of ZigBee and LoRa devices
through chirp emulation, it’s crucial to carefully consider the
inherent physical layer constraints of both technologies. Specif-
ically, when emulating a chirp for transmission via ZigBee, it’s
essential to align the time duration of the emulated chirp with
the characteristics of the target LoRa chirp. This necessitates a
meticulous examination and synchronization of the time dura-
tion parameters within the chirp emulation process to faithfully
replicate the behavior of LoRa chirps on authentic ZigBee and
LoRa devices.

The chirp waveform, determined by a spreading factor (SF),
consists of a total of 2°F samples, maintaining a sampling rate
equivalent to its bandwidth (BW). For instance, in a specific
scenario where the spreading factor is designated as 7 and the
bandwidth is 1625kHz, the duration of the emulated chirp can
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Fig. 3. Specific ZigBee waveforms utilized in ZigRa.

be computed as follows:

25F 128
BW  1625KHz

The ZigBee (IEEE 802.15.4) device operates with a symbol
duration of 16 1s. To generate a waveform matching the duration
of a single LoRa chirp, approximately 80/16 (that is, approxi-
mately 5) chips need to be transmitted. In the context of OQPSK
modulation, each payload bit undergoes modulation into one
OQPSK chip. Consequently, emulating a chirp waveform com-
monly employed in LoRa communication requires five ZigBee
symbols. Thus, a complete LoRa symbol requires segmentation
and emulation through five ZigBee symbols, as illustrated in
Fig. 2.

Tsymbol = ~ 80#8 (1)

B. Selecting ZigBee Waveforms for ZigRa

Building on the previous analysis of OQPSK and CSS, we
explore the possibility of using specific ZigBee sequences to em-
ulate LoRa signals. This process involves leveraging advanced
neural networks to optimize waveform selection and ensure the
successful decoding of ZigBee data by LoRa receivers. The
ZigBee protocol is built on the IEEE 802.15.4 standard, which
employs OQPSK modulation to encode data. This modulation
scheme alternates between the [ and () components of the
carrier signal. Specifically, the data bits are mapped to the [
and () components through the modulation of their phases.
Each symbol represents a phase shift, with the values I and
@ corresponding to specific binary sequences. For example,
the chips ¢, c2, ... are modulated onto the I signal, while the
chips ¢y, cs3, . .. are modulated onto the () signal, sequentially,
as shown in Fig. 3.

In order to manipulate these signals for cross-technology
communication, a numerically controlled oscillator (NCO) is
employed. The NCO is a key component in both modulation
and demodulation processes of digital communication systems.
The NCO generates sinusoidal waveforms, which can be either

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 24, NO. 11, NOVEMBER 2025

in-phase or quadrature, based on a phase control input. The phase
of the NCO, denoted as ¢, determines the output signal, which
is typically expressed as s = sin(¢) or s = cos(¢). The phase
¢ can be expressed as:

p=1fw-t @)

where w is the angular velocity, and f is the frequency of
the signal. The relationship between angular velocity w and
frequency f is given by w = 2x f. Therefore, at any given time
t, the signal can be expressed as:

s(t) =sin(2w ft) or s(t) = cos(2wft) 3)

This mathematical model enables the generation of both sine
and cosine signals, which are essential for modulating the I and
@ components. In ZigRa, the goal is to select specific ZigBee
waveforms that can be mapped to LoRa symbols in such a way
that ensures the successful transmission and decoding of data.
To achieve this, we need to align the frequency characteristics of
the two systems. Specifically, the goal is to map ZigBee bit se-
quences to the 128 LoRa symbols generated during one symbol
duration. Let us consider the modulation of ZigBee signals using
a binary pattern of ‘1010..." applied to the I-channel chips and
1010...” applied to the (Q-channel chips. The resulting waveform
forms a complex exponential signal, which can be expressed in
terms of real and imaginary components as:

eI CrItHY) — cos(2mft +10) 4+ jsin(2nft +¢)  (4)

Here, 1 and ¢ represent phase shifts for the in-phase and
quadrature components, respectively. The phase and frequency
of the generated signal are directly tied to the chip patterns
being used. To encode a LoRa symbol, a sequence of ZigBee
bits is necessary. As an example, it takes a total of 180 bits,
derived from the pattern ‘1100 1100... 1100’, to encode one
LoRa symbol, with the symbol duration approximately equal to
80 us (as discussed in Section V-A). This means that each LoRa
symbol is represented by a specific set of ZigBee waveforms
that correspond to a certain group of bits.

Now, we need to ensure that the selected ZigBee waveforms
are compatible with the LoRa system for successful commu-
nication. LoRa utilizes CSS modulation, where each symbol
is spread across 25 chip sequences, where SF represents the
spreading factor. When the spreading factor SF'is set to 7, there
are 128 distinct chip sequences, each corresponding to a unique
LoRa symbol. These sequences are generated by applying a fre-
quency shift to the base frequency, and the frequency difference
of each sequence can be expressed as:

BW x k
fnie(k) = TosF ke

where BW is the bandwidth of the system, and k represents
the index of each chip sequence. For each k, the corresponding
initial frequency finit (k) is different, and this variation allows the
frequency space to be divided into 257 unique sequences. The
challenge in ZigRa is to map the 128 distinct ZigBee waveforms
to the 128 different LoRa chip sequences such that the resulting
signal is compatible with LoRa’s CSS modulation. This requires
careful selection of ZigBee waveforms, as each LoRa symbol

[0,25F — 1] (3)
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must be represented by a unique pattern of ZigBee bits. This task
is computationally complex due to the large number of possible
ZigBee bit sequences, specifically 250 possible combinations for
a single LoRa symbol. Our ultimate goal is to find a bit sequence
out of 280 in the ZigBee domain, which can be mapped to a bit
sequence out of 27 in the LoRa domain. Formally, the mapping
is defined as follows:

280 27
PZigBee € PZigBee = PLoRa € PLoRa (6)

where P denotes the value space. Finding a particular map
for a given Pr,p, by brute force is harder than looking for a
needle in a haystack because the combinations are more than
the number of atoms in the universe. To handle this complexity,
ZigRa employs neural network-based algorithms for waveform
selection. The neural network is trained to optimize the mapping
between ZigBee sequences and LoRa symbols by learning the
underlying relationships between the two systems. The training
process involves using a dataset that contains pairs of ZigBee
waveforms and their corresponding LoRa symbols.

By minimizing the error between the predicted and actual
LoRa symbols, the neural network learns to identify the optimal
ZigBee waveforms that can be used for each LoRa symbol. Once
trained, the neural network can quickly identify the most suitable
ZigBee waveforms for any given LoRa symbol, ensuring that
the data can be transmitted efficiently and decoded accurately
by LoRareceivers. This approach significantly reduces the com-
plexity of waveform selection compared to traditional methods,
where exhaustive search or manual mapping would be required
(The detail is shown in Section V-C).

C. ZigRa Based on Neural Network

At the heart of the waveform-emulated ZigRa framework
is the complex task of identifying ZigBee payloads that can
replicate the waveform of specified LoRa packets. Traditional
methods in CTC systems have often relied on reverse engi-
neering to achieve this goal. In conventional CTC systems, the
goal is to transmit a packet Pr,p, from a LoRa sender to a
LoRa receiver over a ZigBee channel. Reverse engineering is
employed to determine the appropriate payload Pyz;4pe. capable
of generating a waveform similar to the desired Pr,rq, thereby
allowing LoRa receivers to decode the transmitted message
accurately.

In our system, the transformer model receives as input a
fixed-length binary sequence derived directly from the ZigBee
payload. We emphasize that the transformer does not operate on
raw I/Q samples. Instead, we adopt a lightweight symbolic-level
input representation that facilitates real-time compatibility with
ZigBee hardware constraints. Let x = [z, 22, ..., 2, denote
the ZigBee payload bits, where each z; € {0,1}. The input
feature space is defined as:

T,
X:{XE{O,l}”nzszy::POI} (N
it

where Tympol denotes the LoRa symbol duration (e.g., 80 us for
SF=7 and BW=1625 kHz), and Ty; is the ZigBee bit duration
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are otherwise out of reach for most other animals.

(1 us). Therefore, each LoRa symbol interval corresponds to
n = 80 ZigBee bits, forming the transformer’s input vector.

ZigBee symbols are mapped to OQPSK waveforms according
to the IEEE 802.15.4 standard, where each 4-bit symbol is
spread into a 32-chip pseudo-random (PN) sequence. Chips
are interleaved into I and Q streams with a half-symbol delay.
In our model, we treat this modulation pipeline as a fixed
deterministic mapping. Phase ambiguities inherent in OQPSK
are resolved by assuming a consistent initial phase reference
across the training dataset, ensuring stable waveform semantics.
The neural network thus implicitly learns to account for such
phase relationships during training. The model learns a mapping
function:

F:{0,1}" - R (8)

which predicts the frequency-domain energy distribution across
FFT bins (128 bins for SF=7). The target is the FFT bin index
k* corresponding to the peak detected at the LoRa receiver after
demodulation. Training samples are constructed using empirical
waveform transmission over the air, where each ZigBee payload
x is paired with its resulting FFT peak index observed by a LoRa
receiver. This representation avoids the need for real-time signal
synthesis and enables efficient and practical payload selection
on constrained ZigBee devices.

In the context of communication, the relationship between
ZigBee and LoRa can be likened to a linguistic analogy in
natural languages, specifically the phenomenon of homophony.
Homophony occurs when words from different languages have
the same or nearly identical pronunciation, despite differing
meanings or etymologies. A classic example of homophony
is found in the Chinese phrase ‘san ke you, which closely
resembles the English expression ‘thank you’ in pronunciation,
albeit with a different meaning. This analogy serves as a practical
illustration of how seemingly disparate systems, like ZigBee and
LoRa, can share waveform characteristics, even though their
underlying technologies are vastly different.

This cross-linguistic homophony phenomenon has practical
applications in translating foreign product brands. Brands often
use homophonic phrases from other languages to create names
that sound similar to their original counterparts, despite the
languages being linguistically distinct. This concept, depicted in
Fig. 4, reflects how ZigBee can generate waveforms that emulate
those of LoRa, even though the two technologies operate on
different modulation schemes.
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Inspired by this linguistic analogy, we introduce NN-ZigRa
(ZigRa based on Neural Network), an innovative solution de-
signed to facilitate waveform-emulated CTC between Zig-
Bee and various LoRa devices. NN-ZigRa leverages a Neu-
ral Network-based CTC framework to achieve this complex
task. In this study, we redefine CTC as a classical language
translation problem, which aligns with the domain of neural
language processing, where significant advancements have been
made in recent years. The application of neural networks to
CTC challenges is particularly powerful in addressing complex,
nonlinear relationships between different modulation schemes,
such as ZigBee’s OQPSK and LoRa’s CSS.

The neural network model used in ZigRa is designed to
optimize the mapping between ZigBee waveforms and LoRa
symbols. The input to the network consists of ZigBee bit se-
quences, while the output is the corresponding LoRa symbol.
This procedure treats the ZigBee sender and LoRa receiver as
functionally abstracted modules, without relying on the knowl-
edge of their internal implementation details. It repeats until a
sufficient number of pairs are found. The procedure proceeds
from the ZigBee sender to the LoRa receiver. It aims to pick a
small percent of the mappings from the almost infinitely possi-
ble pairs. Let X = {z1, 22,...,z,} represent a set of ZigBee
sequences, where each x; is a sequence of bits mapped to the /
and @ components. The network learns a mapping f(X) — Y,
where Y represents the LoRa symbol corresponding to the
ZigBee bit sequence. The loss function for training is defined
as:

L= "|fx:) - vil? ©)
i=1
where y; represents the target LoRa symbol, and || - || denotes

the Euclidean distance between the predicted and actual LoRa
symbols. The network is trained to minimize this loss, ensuring
that the predicted symbols are as close as possible to the true
LoRa symbols. Once trained, the neural network can be used to
predict the appropriate ZigBee waveforms for any LoRa symbol,
making the waveform selection process efficient and scalable.

NN-ZigRa is not limited to ZigBee and LoRa communication
but is adaptable to a range of CTC applications across diverse
protocols that operate within the same spectrum. The model
is designed to be extensible, meaning it can be applied to
any pair of communication technologies that require waveform
translation. NN-ZigRa adopts a holistic approach to CTC by
treating communication devices and channels as black boxes.
This enables the system to emulate the waveform of any desired
LoRa packet from a given ZigBee payload without requiring
detailed knowledge of the internal workings of the devices or
channels. The architectural layout of NN-ZigRa is illustrated in
Fig. 5, providing a visual representation of how the system is
structured.

At the core of NN-ZigRa’s functionality is the critical role
played by the training dataset. Building an extensive and accu-
rate repository of ZigBee-to-LLoRa mappings is essential to the
success of the neural network model. The dataset must cover a
wide range of ZigBee payloads and their corresponding LoRa
packets, ensuring that the generated waveforms exhibit a high
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degree of similarity to the desired LoRa signals. This process
requires careful attention to the characteristics of both ZigBee
and LoRa modulation schemes.

A key challenge lies in the fact that LoRa symbols persist
for 80 s, whereas a ZigBee symbol, which represents 4 bits,
lasts for only 16 wus. More specifically, each ZigBee symbol
lasts for 4 us, and each ZigBee bit lasts for 1 us. These time
differences pose a significant challenge when attempting to align
ZigBee signals with LoRa signals, as there is a large discrepancy
between the symbol durations of the two technologies. However,
within the 80 us duration of a LoRa symbol, there is sufficient
time to transmit 80 ZigBee bits, which can be used to emulate the
waveform of a LoRa packet. This results in a pool of 289 potential
ZigBee bit sequences from which the optimal sequence must be
selected.

The primary objective of NN-ZigRa is to identify the appro-
priate bit sequence from the ZigBee domain that can emulate the
waveform characteristics of a LoRa packet. To achieve this, we
employ a training methodology that allows the neural network
to learn the best possible mapping between ZigBee payloads
and LoRa packets. This involves training the network to discern
the patterns in the ZigBee signals that most closely match the
waveforms required for LoRa reception.

To accomplish the complex task of mapping ZigBee payloads
to LoRa waveforms, we employ a transformer neural network
architecture, which has gained prominence in sequence-to-
sequence translation tasks. The Transformer architecture excels
in handling long-range dependencies and captures contextual
information from the input sequence through a self-attention
mechanism. This mechanism allows the model to dynamically
focus on different parts of the input sequence during the encod-
ing process, thereby enhancing the model’s ability to capture
important features of the signal. The Transformer’s self-attention
mechanism can be expressed as follows:

QKT
e

where () is the query matrix, K is the key matrix, V is the
value matrix, and dy, is the dimension of the key vector. The
self-attention mechanism allows the model to determine which
parts of the input sequence are most relevant to a given output.
In the context of ZigBee-to-LoRa translation, the self-attention
mechanism helps the network focus on specific ZigBee bits

Attention(Q), K, V') = softmax < ) 1% (10)
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that are most relevant for generating the corresponding LoRa
symbol.

The transformer model consists of an encoder-decoder struc-
ture, where the encoder processes the input ZigBee bit sequence
and the decoder generates the corresponding LoRa symbol.
The encoder-decoder architecture enables the model to perform
efficient sequence-to-sequence translation, which is crucial for
waveform emulation. Specifically, the encoder converts the input
ZigBee signal into a higher-dimensional representation, and the
decoder maps this representation to a LoRa waveform.

During training, the NN-ZigRa model learns the optimal
transformation from ZigBee bit sequences to LoRa waveforms
by minimizing the error between the predicted LoRa signal and
the actual LoRa waveform. This training process is guided by a
loss function that quantifies the difference between the predicted
waveform and the target waveform. A common loss function
for regression tasks, such as this one, is the mean squared error
(MSE) loss:

1 N
L(O) =~ D_(vi = 5)* (11
=1

where y; represents the true LoRa symbol, y; represents the
predicted LoRa symbol, and N is the total number of samples
in the dataset. The loss function provides a measure of how
well the network is performing and guides the optimization of
the model’s parameters. LoRa demodulation produces discrete
FFT peak indices, which makes this appear to be a classifica-
tion task. In conventional classification problems, cross-entropy
loss is appropriate when: The output is categorical (e.g., class
indices) and the model produces a probability distribution over
the classes (e.g., softmax). However, in ZigRa, the FFT peak
index is treated as a continuous frequency-domain position.
Due to frequency offset, symbol drift, and neural waveform
mismatches, the resulting FFT bin may lie near-but not exactly
at-the intended bin. Thus, treating this as a strict classification
task could penalize small misalignments disproportionately.
Once the NN-ZigRa model has been trained, it can gener-
ate a ZigBee bit sequence that produces a waveform suitable
for LoRa reception. This process involves two key steps: The
trained model takes a ZigBee payload as input and generates
a corresponding LoRa waveform. The waveform is generated
by passing the input ZigBee sequence through the transformer
model, which encodes the ZigBee bits into a latent space rep-
resentation and decodes it into a LoRa signal. After the time-
domain waveform is generated, it is multiplied by a down-chirp
signal, which is characteristic of LoRa’s CSS modulation. This
operation shifts the frequency of the waveform into the appro-
priate frequency domain, allowing it to be processed by a LoRa
receiver. The resulting signal can then be demodulated using the
LoRa receiver’s frequency-domain processing techniques.
Despite the unique challenges posed by LoRa’s modulation
technique, the neural network model proves effective in gener-
ating time-domain waveforms that align with LoRa’s reception
characteristics. This demonstrates the feasibility of using neural
networks for cross-technology waveform simulation, although
implementing such a system in practice requires rigorous vali-
dation of the model’s performance across various scenarios.
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D. Preamble Detection

The preamble plays a critical role in enabling the receiver
to synchronize with the transmitter in terms of frequency and
timing. This synchronization allows the receiver to establish
and maintain a stable connection with the transmitted signal.
Additionally, the preamble allows the receiver to distinguish
the beginning of the transmission from other signals or noise
present on the same frequency. The receiver initiates the de-
modulation process by extracting the chirp signal embedded
within the received signal. Once the chirp signal is extracted,
the receiver applies the inverse chirp to convert it back to its
original data signal. During the decoding of message symbols,
symbols representing ‘0’ may resemble the symbols used in the
preamble. Conversely, for symbols representing ‘1°, the starting
frequency is precisely positioned at the midpoint, as illustrated
in Fig. 6.

Fig. 7 illustrates the LoRa symbols (preamble, sync word,
start frame delimiter, and payload). The preamble serves as
a standardized pre-transmission sequence typically transmitted
prior to the actual data payload. The LoRa preamble comprises
three primary components: a variable preamble, a sync word,
and a start frame delimiter (SFD). The variable preamble, typ-
ically consisting of multiple up-chirp symbols, serves various
purposes such as signal detection, receiver gain configuration,
and frequency and sampling time synchronization. Its length
is determined by the chip’s registers and is commonly set to
6 symbols. The sync word, occupying a field of 2 symbols,
enables quick identification of distinct LoRa networks, help-
ing distinguish between different network environments. The
SFD, a standardized down-chirp signal lasting 2.25 symbols,
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signals the end of the preamble and the start of data payload
transmission, facilitating accurate parsing of the transmitted data
by the receiver.

It is interesting to note that ZigRa incorporates a robust
preamble detection and synchronization strategy that enables
LoRa receivers to detect and align with the beginning of the
ZigBee-emulated waveform. As detailed in Section V-D and
V-E, ZigRa inserts a specifically designed preamble at the start
of transmission, which, after multiplication by a down-chirp
and FFT processing, yields clearly identifiable frequency peaks.
These peaks serve as markers for frame alignment and compen-
sate for minor timing offsets by allowing the receiver to realign
with the signal’s FFT window. This mechanism is similar to
traditional LoRa preamble-based synchronization.

ZigRa uses the standard LoRa CRC mechanism at the re-
ceiver, which is preserved throughout the ZigRa data path.
After the frequency-domain peak detection and symbol reassem-
bly, the reconstructed ZigBee payload is passed through CRC
validation. Packets that fail CRC checks are discarded, which
helps mitigate FFT misalignment-induced errors. While ZigRa
currently implements a basic CRC-based discard mechanism, re-
transmission support is compatible with existing ZigBee MAC-
layer ACK and retry mechanisms. In practical deployments,
MAC-layer retransmissions can be used to improve reliability
without any modification to the LoRa receiver.

E. ZigRa Demodulation

The demodulation process in ZigRa involves several key steps
that ensure the reliable extraction of ZigBee data from a signal
modulated using LoRa’s CSS. The process can be broken down
into clear stages: waveform identification, correlation with the
reference template, signal down-chirp multiplication, frequency
analysis, preamble detection, and final bit demodulation. These
stages are described in more detail below, along with the neces-
sary mathematical background.

Once the transmitted waveform is selected, ZigRa uses a
correlation template to detect the signal segment. The correlation
template serves as a reference that ZigRa compares with the
received signal to detect the presence of the expected waveform.
This step is essential for distinguishing the desired ZigBee signal
from noise or interference that may be present. The correlation
between the received signal (¢) and the template ¢(¢) is ex-
pressed as:

Cr) = [O r(t) - t(t — 7)dt (12)

o0

where 7 is the time lag of the correlation. A peak in the correla-
tion output indicates the position of the waveform in the received
signal. Once the correct segment of the signal is identified, ZigRa
multiplies the signal by a down-chirp in the time domain. The
down-chirp is used to reverse the frequency shift introduced
by LoRa’s CSS modulation. This process shifts the frequency
components of the signal, bringing them to the baseband, which
facilitates easier demodulation. The down-chirp multiplication
is expressed mathematically as:

rChirped(t) = r(t) . e_j27rfchirpt (13)
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where feirp is the chirp rate. This multiplication effectively
reverses the frequency modulation applied by the LoRa transmit-
ter, making it easier for ZigRa to detect the underlying ZigBee
signal. After the signal is down-chirped, ZigRa performs a FFT
on the signal. The FFT decomposes the signal into its frequency
components, revealing peaks at specific frequencies that corre-
spond to the encoded symbols. The frequency resolution fies
of the FFT is determined by the time window T used for the
analysis, fres = 1/T.

In the case of ZigRa, if the time window 7" is set to 80 us
(as typical for ZigBee signals), the frequency resolution will
be: fres = 1/80us = 12.5kHz. This resolution allows ZigRa
to differentiate the ZigBee signal peaks, which are located at
+500kHz, giving the peaks at positions: £500/12.5 = +40.
ZigRa detects the preamble of a ZigBee frame by identifying a
series of repeated frequency peaks, which indicate the start of the
frame. These peaks are periodic and allow ZigRa to synchronize
with the incoming signal. The preamble provides a clear marker
for the beginning of the transmission, enabling ZigRa to lock
onto the signal and extract the subsequent data correctly.

Once the preamble is detected, ZigRa traces the corresponding
peaks to demodulate them into symbols or bits in parallel.
This process involves converting the analog signal into a digital
form. The demodulated bits are then packed into frames. ZigRa
uses the known properties of ZigBee modulation to accurately
recover the bitstream, enabling reliable data transmission. The
demodulated bits b are packed into frames F’, as follows:

F ={by,ba,...,b,}

where b; represents each demodulated bit. In ZigRa, ZigBee
and LoRa operate at different frequencies, making it possible to
distinguish their signals based on their frequency components.
The frequency deviation of the ZigBee waveform is 500 kHz,
corresponding to a tone period of 2 us, as shown in Fig. 3.
ZigRa capitalizes on this frequency difference to separate the
two signals.

In contrast, for a LoRa symbol, the number of peak locations
in the FFT depends on the symbol cardinality. For example, if
each LoRa symbol corresponds to two bits, the peaks will have
specific locations such as the Oth, 32nd, 64th, and 96th bins in the
FFT (assuming an FFT size of 128). These locations are fixed and
do not overlap with the ZigBee peaks, making it easy for ZigRa
to distinguish between the two signals. Fig. 8 illustrates the clear
separation between ZigBee and LoRa peaks. These steps allow
ZigRa to isolate and successfully demodulate ZigBee frames,
enabling efficient and reliable communication in environments
where ZigBee and LoRa signals coexist.

ZigRa relies on selecting specific ZigBee sequences to gener-
ate frequency peaks that are compatible with LoRa’s CSS. The
fundamental goal of this approach is to create distinct frequency
components for ZigBee signals that can be demodulated even
when they coexist with LoRa signals. However, the peak value of
the LoRa signal at the receiver is uncontrollable, and this can lead
to situations where the ZigBee and LoRa signals overlap in the
frequency domain, potentially causing interference if they share
the same frequency peak. To address this concern, we employ
frequency peak positioning strategies in the ZigRa system to

(14)
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ensure robust separation and minimize interference. The key
idea behind the ZigRa system is to carefully design the ZigBee
sequences to ensure that their frequency peaks are separated
from the LoRa signal’s peaks in the frequency domain. However,
since LoRa’s signal peaks are determined by the SF and the
frequency offset, the overlap of ZigBee and LoRa peaks may
still occur under certain conditions.

We use a dynamic frequency adjustment strategy in which
ZigRa can adjust the frequency range of ZigBee sequences to
avoid overlap with the LoRa signal peaks. This flexibility allows
the system to adapt to the frequency characteristics of the LoRa
signal in real-time, reducing the likelihood of peak overlap. The
neural network used in ZigRa plays a crucial role in optimizing
the mapping of ZigBee sequences to LoRa-like frequency peaks.
The network is trained to identify and mitigate potential conflicts
by ensuring that the mapped ZigBee sequences are placed in
frequency bins that minimize the impact of interference from
LoRa. When ZigBee and LoRa signals overlap at the same
frequency peak, we employ interference cancellation techniques
in the receiver.

The receiver is designed to detect and isolate peaks by first
identifying distinct frequency patterns associated with ZigBee
and LoRa signals. Even if the signals overlap at the same
frequency, the modulation characteristics (e.g., phase shifts,
spreading factors) of each signal differ, allowing the receiver
to distinguish between them. If overlapping peaks are detected,
ZigRa uses signal reconstruction algorithms to separate the
components of the ZigBee and LoRa signals. This involves
processing the signal in the time domain after down-chirping
to reconstruct the individual signal components. In some cases,
weighted filtering techniques can be applied to prioritize the
ZigBee signal in the presence of LoRa interference, based on
the known characteristics of both signals. This helps reduce the
impact of the LoRa signal on the ZigBee demodulation process.

F. Configuration of ZigBee Signals

In ZigBee wireless communication, the default configuration
utilizes a technique called DSSS to spread a ZigBee symbol,
comprising four bits, into a predefined 32-chip sequence known
as the Pseudo-Noise (PN) sequence. However, due to the pre-
defined nature of the PN sequence utilized in DSSS, it’s not
feasible to arbitrarily select the chips to generate desired signals,
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DSSS, which do not meet the needs of generating special LoRa Waveforms.

as illustrated in Fig. 9. This implies that the selection of the PN
sequence and its corresponding chips are crucial for achieving
the desired signal characteristics. In DSSS, the spreading of the
ZigBee symbol into the 32-chip PN sequence aids in spreading
the signal across a wide frequency band. This spread contributes
to robustness against narrow-band interference and noise. Sub-
sequently, the receiver despreads the received signal using the
same PN sequence, thereby enhancing the signal-to-noise ratio
and mitigating the effects of interference.

The default configuration of ZigBee employs DSSS to expand
afour-bit ZigBee symbol into a predefined 32-chip PN sequence.
While PN sequences offer robustness against interference and
noise, they limit the ability to select arbitrary chips for signal
generation. However, the IEEE 802.15.4 g standard specifies
that commodity ZigBee radio chips, such as Atmel ATS86RF233
and Atmel AT86RF215, can support versatile data rates ranging
from 250 kb/s to 2000 kb/s by adjusting the spreading factors in
DSSS.

Long-range communication waveforms for ZigBee can be
generated by selecting the payload bits of the ZigBee frame.
This approach enables the implementation of an ultra-low-
cost payload encoding method, facilitating ubiquitous LPWAN
without requiring any hardware modifications to existing IoT
devices. Such an approach offers a cost-effective solution for
enabling long-range communication, particularly for resource-
constrained IoT devices that require energy-efficient communi-
cation methods.

G. Long Range Communication for ZigRa

In the realm of wireless communication, achieving long-range
transmission typically involves increasing transmission power,
improving receiver sensitivity, or a combination of both. LoRa,
a wireless communication technology, focuses on enhancing
receiver sensitivity, boasting an impressive sensitivity of up to
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-134 dBm. This exceptional sensitivity is a result of LoRa’s
utilization of spread-spectrum techniques, particularly CSS, a
core feature of LoRa.

CSS involves expanding a narrow-band signal into a wide-
band transmission, enabling it to travel extended distances with-
out significant signal attenuation. Upon reaching the receiver, the
wide-band transmission undergoes template correlation, which
reverts the signal back to its original narrow-band form. This
process effectively spreads both narrow-band interference and
noise across a wide bandwidth, allowing for differentiation using
FFT. As a result, the energy of the original signal becomes con-
centrated in a narrow bandwidth, making it distinguishable from
the widespread energy of noise and interference. Hence, LoRa’s
utilization of CSS significantly contributes to its high receiver
sensitivity, enabling robust long-range wireless communication.

In contrast, ZigBee achieves long-range communication
through the use of specific waveforms optimized for extended-
distance transmission. These waveforms generate ultra-
narrowband signals resistant to interference and noise, easily
detected and demodulated even under challenging signal con-
ditions. During a FFT time window equivalent to the duration
of a clear to send symbol, the specific waveform produces a
single-tone sine wave that is ultra-narrowband. Consequently,
the signal energy is concentrated within a narrow frequency
band, facilitating its distinction from noise and interference.
ZigRa emulates the frequency-domain footprint of LoRa chirps
rather than transmitting actual wideband chirps. By leveraging
carefully selected ZigBee payloads that produce narrowband
tones, ZigRa allows the LoRa receiver to detect symbols in the
FFT domain similarly to how it would process real chirps.

VI. PERFORMANCE EVALUATION

We will now present empirical results for the generalized
ZigRa framework and provide a detailed account of the experi-
mental setup.

A. Hardware

Fig. 11 illustrates the experimental setup of the ZigRa sys-
tem. Implemented on the USRP (Universal Software Radio
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Peripheral) B210 platform with LoRa PHY [29], the ZigRa
sender (i.e., ZigBee) operates on commercial chips, specifically
the Atmel AT86RF233 compliant with the IEEE 802.15.4 g
standard. The transmission power of the ZigRa sender is set
to 0 dBm by default. On the receiving end, the ZigRa receiver
(i.e., LoRareceiver) utilizes a Semtech SX1280 chip, employing
a bandwidth of 812 KHz and a spreading factor of 8, with the
channel frequency set at 2.4 GHz. Demodulation and decoding
of ZigBee signals are performed using LoRa and USRP-B210
devices at the receiver. The commercial ZigBee and LoRa de-
vices are used to simulate real-world deployment conditions.
The USRP is used for LoRa PHY implementation and custom
signal processing, offering flexibility for experimentation. The
combination of these two types of devices ensures that the
system is both flexible for research purposes and compatible
with commercial systems.

B. Experimental Insight

Fig. 12 shows the performance of ZigRa with different SFs
and signal-to-noise ratios (SNRs) for a BW of 8§12 KHz. Higher
SFs result in better performance for ZigRa, attributed to longer
chirp lengths that concentrate signal energy during demodula-
tion. As depicted in Fig. 12(a), the symbol error rates (SERs) of
ZigRaincrease with decreasing LoRa SNR. However, compared
to other systems, ZigRa exhibits a slower increase in SER. Even
under challenging conditions where the signal power is weaker
than the noise (SNR < 0), ZigRa maintains arelatively low SER.

Fig. 12(b) illustrates the SER as a function of distance for
different SF values: 8, 10, and 12. As the SF increases, the SER
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decreases. This is because a higher SF improves the robustness
of the communication system, making it less susceptible to
errors. In this case, SF = 12 shows the lowest SER, followed by
SF = 10, and SF = 8 shows the highest SER. As the distance
increases, the SER increases, which is expected because the
signal power weakens with distance due to the inverse square
law. This leads to a lower SNR, which results in a higher error
rate. The curves for each SF are upward sloping, indicating
that as the distance increases, the Symbol Error Rate increases,
which aligns with the expected physical behavior of wireless
communication systems.

The remarkable performance of ZigRa can be attributed to
its utilization of chirp de-spreading, effectively concentrating
energy and enhancing noise immunity for long-range transmis-
sions. This feature enables ZigRa to maintain reliable commu-
nication even amidst significant signal attenuation during prop-
agation. Fig. 13(a) represents the throughput of two systems,
ZigRa and a benchmark, at different SNRs and for various SF.
Specifically, the plot compares ZigRa’s performance at spread-
ing factors SF=8, SF=10, and SF=12 with the benchmark
system operating at the same spreading factors.

As the SNR increases, the throughput for both ZigRa and
the benchmark system improves. However, ZigRa consistently
performs better than the benchmark across all SNR levels for the
same spreading factors. For both ZigRa and the benchmark sys-
tem, the throughput increases as the spreading factor decreases.
This is because lower SF values allow for faster transmission, but
at the cost of reduced range and robustness to noise. Specifically,
SF=8 offers the highest throughput, while SF=12 provides the
lowest throughput but the greatest resilience to noise. For ZigRa,
the throughput at SF=8 starts to plateau at higher SNR values,
while for the benchmark system, the throughput continues to
increase gradually. This suggests that ZigRa has a more efficient
method of utilizing the available bandwidth and achieving high
throughput in high SNR conditions.

Fig. 13(b) the Throughput as a function of distance for three
different SF: 8, 10, and 12 for both ZigRa and Benchmark
systems. As the distance increases, the throughput decreases
for all SF. This is because longer distances result in greater
signal attenuation, which reduces the ability to maintain a high
data rate. The exponential decay curve in each plot shows how
the throughput diminishes as distance increases. ZigRa (SF=8)
shows the highest throughput, followed by ZigRa (SF=10)
and ZigRa (SF=12). This suggests that ZigRa with lower SF
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values can achieve higher throughput, as expected, since smaller
SF values correspond to faster transmission rates but shorter
range. Benchmark systems, corresponding to SF=8, SF=10,
and SF=12, show lower throughput than ZigRa at each distance.
This indicates that ZigRa offers better performance than the
benchmark system across different SF values.

C. LoRa Waveform Generated Via NN

Fig. 14 assess the model’s ability to translate ZigBee wave-
forms to LoRa signals. It shows the predicted LoRa waveform
generated by the neural network model after being trained on
ZigBee input sequences. The model was trained to predict the
LoRa waveform from the corresponding ZigBee signals. This
output illustrates how well the neural network can emulate the
frequency modulation of LoRa, as learned from the training
dataset. The predicted waveform, while similar to the actual one,
may exhibit some discrepancies in the frequency sweep, ampli-
tude, or phase, reflecting the model’s limitations in perfectly
emulating the Chirp Spread Spectrum.

The comparison between the actual and predicted LoRa wave-
forms helps assess the performance of the neural network. A
high degree of similarity between the two signals suggests that
the model is successfully learning the underlying characteris-
tics of LoRa modulation from the ZigBee data. However, any
noticeable deviations between the two waveforms may indicate
areas where the model needs further refinement. These discrep-
ancies could be due to the model’s inability to fully capture the
subtle features of LoRa’s Chirp Spread Spectrum or insufficient
training data. Therefore, further improvements in the model’s
architecture, training data diversity, or training duration might be
necessary to enhance the accuracy of the predicted waveforms.

Fig. 15 displays the training and validation loss over the course
of the model’s training epochs. The training loss represents
how well the model is learning to predict the correct LoRa
waveforms from the ZigBee input signals during the training
process. Ideally, as training progresses, the training loss should
decrease, indicating that the model is effectively minimizing the
error in its predictions. The validation loss, which is evaluated
on a separate validation dataset, is also tracked to ensure that the
model is generalizing well and not just overfitting to the training
data. If the validation loss remains relatively stable or decreases
alongside the training loss, it indicates good generalization.
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Fig. 16.  LoRa Chirp Spread Spectrum (CSS) and the modified ZigBee wave-
form.

Fig. 15(b) displays the training and validation loss for the
model when trained on different SF values, specifically SF=§,
SF=10, and SF=12. The training loss represents how well the
model is learning from the training data over the epochs, while
the validation loss indicates how well the model generalizes to
unseen data. As expected, the loss increases as the SF value
increases, suggesting that the model struggles more with higher
SF values due to the increased complexity of the LoRa signal.
For SF=8, the model exhibits the lowest loss, indicating that the
waveform is easier for the model to learn and predict. However,
as SF increases, the model faces longer symbol durations and
more frequency spread, which makes learning more difficult
and leads to higher training and validation losses. This trend
is typical in sequence-to-sequence tasks where increased input
complexity demands more model capacity and longer training
time. The higher validation loss for SF=12 also hints at possible
overfitting to the training data, as the model may struggle to
generalize to the more complex signal structure.

D. Waveform Fitting

Fig. 16 shows the two waveforms-LoRa CSS and the modified
ZigBee waveform-are plotted together, with both signals resam-
pled to share a common time axis from 0 to 0.008 seconds.
Despite their different modulation schemes, the two waveforms
appear quite similar. The LoRa signal exhibits a smooth, con-
tinuous frequency change due to its chirp modulation, while
the ZigBee waveform, originally a phase-modulated signal, has
been adjusted to resemble a frequency-modulated signal. By
rescaling the ZigBee waveform’s phase shifts to mimic a linear
frequency variation, it becomes visually comparable to the LoRa
signal.
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Fig. 17. Long-range real-world communication of ZigRa. (a) Time Domain.
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Although the ZigBee waveform still retains some of its phase-
modulated characteristics, the adjustments made to its symbol
durations and resampling process allow the frequency behavior
of the ZigBee signal to better match the smooth, continuous
change of the LoRa CSS signal. This similarity in waveform
appearance indicates that both signals now display a more
similar frequency spectrum, despite their underlying differences
in modulation technique. This visual alignment highlights how
ZigBee’s originally discrete frequency shifts can be manipulated
to resemble the chirp-like behavior of LoRa.

E. Long Range Communication

Fig. 17 also demonstrates that ZigRa’s demodulation tech-
nique for ZigBee signals performs nearly as effectively as the
LoRa chirp demodulation technique. Specifically, when a chirp
and a ZigBee-specific signal are combined and demodulated
using FFT with the same FFT size, the resulting magnitudes of
the FFT peak are nearly identical, as depicted at the bottom of
Fig. 17. Despite being immersed in noise, the weak signal can
still be detected and demodulated by the FFT at the LoRa device.
This indicates that ZigRa has the potential to achieve receiver
sensitivity comparable to LoRa. LoRa is capable of achieving a
receiver sensitivity as low as - 134 dBm. Consequently, if the Zig-
Bee sender transmits a frame at 0 dBm, ZigRa could potentially
achieve a link budget of 134 dB. Under ideal conditions, this
could result in a theoretical communication distance exceeding
500 meters, though actual range will depend on factors such as
path loss, environmental conditions, and antenna characteristics.

F. Outdoor Scenario

To evaluate ZigRa’s performance in real-world outdoor en-
vironments, we conducted experiments along a campus road,
varying the distance between the sender and the receiver from
100 m to 500 m, as illustrated in Fig. 18(a). The experimental
settings were carefully chosen, employing a SF and BW of 6 and
1000 kHz, respectively, with a transmission power set to 20 dBm.
To compare ZigRa with commodity L.oRa, we measured their
SERs and PRRs and presented the results in Fig. 18(b) and
Fig. 18(c). As the distance between the sender and receiver
increased from 100 m to 500 m, ZigRa’s SER rose from 0.18
to 0.66, while commodity LoRa’s SER increased from 0.15 to
0.58.

Despite ZigRa exhibiting a higher SER due to imperfect
emulated signals, it achieved a performance level comparable to
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that of commercially available LoRa in terms of both SER and
PRR. Therefore, our experimental results effectively demon-
strate ZigRa’s efficacy within a campus-scale outdoor testbed
setting. These findings are particularly relevant for applications
requiring dependable and efficient wireless communication over
extended distances, such as remote monitoring systems, sensor
networks, and smart cities. ZigRa’s demonstrated performance
establishes it as a viable solution for addressing the commu-
nication requirements of such applications, offering reliable
connectivity and efficient data transmission capabilities even in
challenging outdoor environments.

Fig. 19 illustrates the relationship between PRR and SNR
for different SFs in the ZigRa communication system. As the
SNR increases, the PRR generally improves for all spreading
factors. This is expected because a higher SNR means that the
signal strength is stronger relative to the noise, making it easier
for the receiver to decode the transmitted packets correctly. The
different curves represent the performance for SF=8, SF=10,
and SF=12. Generally, a higher spreading factor provides better
performance in terms of PRR, especially at lower SNR values.
This is because a higher SF increases the robustness of the
signal against noise and interference, allowing for more reliable
communication even when the SNR is not very high. While
higher SFs offer better PRR, they also result in lower data rates
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due to the longer duration required for each symbol transmission.
This trade-off is evident in the plot, where SF=12 shows the
highest PRR but would have the lowest data rate compared to
SF=8 and SF=10.

Fig. 19(b) depicts the relationship between PRR and distance
for different SFs in the ZigRa communication system. As the
distance increases, the PRR generally decreases for all spreading
factors. This is expected because the signal strength typically
weakens with distance due to factors such as path loss and
interference, making it more challenging for the receiver to
decode the transmitted packets correctly. The different curves
represent the performance for SF=8, SF=10, and SF=12. Gen-
erally, a higher spreading factor provides better performance in
terms of PRR, especially at longer distances. This is because
a higher SF increases the robustness of the signal against noise
and interference, allowing for more reliable communication over
greater distances.

While higher SFs offer better PRR, they also result in lower
data rates due to the longer duration required for each symbol
transmission. This trade-off is evident in the plot, where SF=12
shows the highest PRR but would have the lowest data rate
compared to SF=8 and SF=10. Our system tolerates minor
misalignments by leveraging the FFT demodulation process,
which is inherently robust to small time shifts within the chirp
window. As demonstrated in Figs. 12 and 19, ZigRa maintains
stable performance over varying channel conditions, which in-
clude practical timing variations observed in our USRP and
commercial chip experiments.

G. Bit Error Rate

Fig. 20 illustrates the BER versus SNR for a communication
system experiencing different frequency offsets (0 Hz, 10 Hz,
20 Hz, and 50 Hz). The BER is plotted for each frequency
offset at varying SNR values, which reflects how well the system
performs under different levels of noise and interference. As the
frequency offset increases, the BER tends to increase, especially
atlower SNR values. This indicates that higher frequency offsets
introduce more distortion in the signal, leading to more bit errors.
A 50 Hz offset has the most significant effect, with a noticeably
higher BER compared to the other offsets. In contrast, the 0 Hz
offset (representing no frequency shift) shows the lowest BER,
demonstrating the system’s best performance in the absence of
frequency misalignment.
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As SNR increases, the BER decreases for all frequency
offsets, indicating that higher signal quality results in fewer
errors. This is typical behavior in communication systems,
where stronger signals (higher SNR) enable more accurate data
recovery, regardless of the frequency offset. The plot highlights
the trade-off between frequency offset and communication re-
liability. While small offsets (such as 10 Hz or 20 Hz) do
not significantly degrade performance at higher SNRs, larger
offsets (50 Hz) cause a noticeable increase in error rates, which
can be problematic in practical applications. This suggests that
frequency synchronization is crucial for minimizing errors, es-
pecially in noisy environments.

Fig. 20(b) presents a throughput comparison simulation be-
tween the proposed ZigRa system and the systems from refer-
ences [20], [21] (called the Zhijun system in this comparison).
The chart shows throughput (in kbps) at various SNR for differ-
ent spreading factors (SF=8, SF=10, SF=12). The SNR values
range from -10 dB to 5 dB. Each group of bars represents a
different spreading factor for both the ZigRa system and the
benchmark systems (from [20], [21]). ZigRa (SF=8, SF=10,
SF=12): The bars for ZigRa show throughput for the system
using different SF. As expected, ZigRa with SF=8 delivers the
highest throughput, followed by SF=10 and SF=12, which show
progressively lower throughput due to higher redundancy and
error correction introduced by the larger spreading factors.

The bars for [20], [21] represent the performance of traditional
communication systems, using standard LoRa with fixed spread-
ing factors. The Zhijun system achieves a maximum throughput
of around 15 kbps, while Zhijun system performs slightly better,
reaching about 18 kbps. These results are consistent across the
entire SNR range. As shown in the chart, ZigRa consistently
outperforms both systems from [20], [21]. ZigRa with SF=8
achieves the highest throughput, surpassing the Zhijun system
by a considerable margin, especially at lower SNR values.
This is due to ZigRa’s optimized modulation and advanced
error correction, which enable more efficient data transmission.
We conducted a BER analysis under various frequency offset
conditions in Section VI-G (Fig. 20(a)). These results show that
ZigRa’s demodulation can tolerate offsets up to 20 Hz with
only modest degradation, and a larger S0Hz offset, although
impactful, still maintains BER below 0.3 at moderate SNR.
This demonstrates that ZigRa remains operational under realistic
oscillator inaccuracies found in commodity ZigBee and LoRa
hardware.

H. Practical Deployment on Edge Devices

We clarify that the Transformer model used in ZigRa is ap-
plied offline during a training phase to construct a mapping table
between ZigBee payloads and the resulting LoRa-compatible
FFT peaks. Once trained, ZigRa stores a precomputed lookup
table of (payload, symbol) pairs. During runtime, the ZigBee
device only performs a simple table lookup to select the payload
corresponding to the desired LoRa FFT bin.

This table-based approach eliminates the need for Trans-
former inference on ZigBee hardware altogether. Thus, ZigRa
remains fully compatible with commodity ZigBee MCUs (e.g.,
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Atmel AT86RF233 or CC2530), which have limited process-
ing and memory budgets (typically tens of KB of RAM and
sub-100 MHz CPUs). For completeness, we profiled our Trans-
former model’s inference cost on a representative ARM Cortex-
M4 platform (e.g., STM32F4 series with 256 KB RAM and
84 MHz CPU) using TensorFlow Lite Micro. Results indicate:
Model size: 32 KB (quantized 8-bit weights). Inference latency:
~1.2 ms for 80-bit input sequences. Memory footprint (stack +
heap): <50 KB.

While this is feasible for mid-tier MCUs, in ZigRa’s deploy-
ment, such inference is not required in the data path. Instead,
only a payload_id is transmitted, retrieved from a small
static array indexed by desired LoRa symbol index. Therefore,
the proposed system architecture ensures that: The learning
and optimization happen offline on a server or development
host. Runtime payload selection on the ZigBee device involves
negligible latency and memory use. No neural model execution
is required on the low-end MCU during operation.

1. Packet Error Rate Analysis and Transmitter Power
Consumption Analysis

To evaluate the impact of demodulation errors due to FFT peak
drift or partial timing misalignment, we analyze ZigRa’s packet
error rate (PER) under varying SNR, with and without forward
error correction (FEC). We use a lightweight (7,4) Hamming
code for error correction, encoding every 4 bits into 7 bits at
the ZigBee sender before payload selection. The LoRa receiver
applies decoding after symbol recovery. Fig. 21(a) shows the
PER performance over SNR from —5 to 10 dB. Without FEC,
ZigRa begins to experience rapid degradation below 0dB SNR.
In contrast, with FEC enabled, the system maintains a PER
below 10% down to —2 dB, demonstrating approximately 6 dB
of coding gain. This result highlights the feasibility of integrating
lightweight FEC into ZigRa to combat residual errors introduced
during FFT-based demodulation.

To further evaluate the impact of ZigRa’s optimized bit pat-
terns on ZigBee transmitter power consumption, we conducted
experiments comparing both standard IEEE 802.15.4 payloads
and ZigRa-optimized sequences. As illustrated in Fig. 21(b), two
key current metrics-average and peak current—were analyzed
to assess the energy efficiency of the transmission process. The
average current for standard payloads was measured at 16.3 mA,
while the ZigRa variant exhibited a modest increase to 17.1 mA.
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Similarly, peak current rose from 22.5 mA to 24.5 mA with Zi-
gRa. This reflects an approximate 9% increase in instantaneous
current demand when using ZigRa-enhanced payloads, likely
due to reduced DSSS processing gain from the deterministic bit
sequences.

VII. RELATED WORK

Physical-layer CTC: Physical-layer CTC technologies, such
as WiZig [33] and ZigFi [34], enable direct communication
between heterogeneous wireless devices by emulating signals,
despite their incompatible physical-layer modulations [30], [31].
This technology acts as a translator, establishing a mutually com-
patible side channel between two wireless technologies [32]. For
example, since WiFi and ZigBee both operate in the 2.4 GHz
ISM band, solutions like WEBee [35], TwinBee [36], and Long-
Bee [37] can facilitate direct communication between them.
CTC simplifies the coordination of heterogeneous wireless de-
vices, even on a shared channel [38]. Several CTC studies pro-
pose fulfilling the translation function and support applications
such as channel coordination and cross-technology collabora-
tion [39].

WEBee [35] is a software-based PHY-CTC solution that
enables direct communication from WiFi to ZigBee. It achieves
this by modifying the WiFi transmitter to emulate the ZigBee
time-domain waveform, with the WiFi device selecting the
payload of a WiFi frame to simulate the ZigBee packet. QAM
emulation is at the core of WEBee, which is one example of
several PHY-CTC solutions. For instance, XFi [40] enables
mobile devices to directly and simultaneously collect data from
diverse IoT devices via commodity WiFi radio. XBee [41] is
a PHY-CTC solution from ZigBee to BLE, which interprets a
ZigBee frame by observing the bit pattern received at the BLE
receiver. LEGO-Fi [42] facilitates information transfer from
ZigBee to WiFi, alongside numerous others such as WiFi-to-
LoRa [43], [44], [45], Bluetooth-to-LoRa [20], [21], Bluetooth-
to-WiFi [46], LoRa-to-WiFi [47], and LoRa-to-ZigBee [25],
[26]. Additional examples can be found in [48], [49], [50], [51],
[52] and references therein.

Direct communication between ZigBee and LoRa based on
PHY-CTC: LoRaBee [25], [26] was the pioneer in exploring
CTC from LoRa to ZigBee in the Sub-1 GHz bands. It fa-
cilitated communication from LoRa to ZigBee by embedding
specific bytes in the payload of legitimate LoRa packets. These
bytes were selected to allow ZigBee devices to recognize the
corresponding LoRa chirps by sampling the received signal
strength (RSS). LigBee [53] enables symbol-level communi-
cation from the latest LPWAN LoRa node to legacy ZigBee
nodes. L2X [54] provides long-range CTC to diverse receivers
with LoRa transmitters, employing an energy-concentrating
demodulation mechanism that de-spreads LoRa chirps over
the air. L2X enables non-LoRa receivers to detect and de-
modulate LoRa signals even under extremely low SNR. Sym-
phony [21] and BLE2LoRa [20] implements a universal LP-
WAN on existing heterogeneous wireless devices, enabling
concurrent transmission from heterogeneous radios at a Lo-
RaWAN device. XiTuXi [55] employ a well-known NMT model
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called Transformer to learn the bit-sequence to bit-sequence
translation rationale behind the CTC without human interven-
tion. S.Kang propose FLEW [56], Unify [57] and DREW [58]
for enabling direct communication between WiFi and
Bluetooth.

In contrast to previous studies, our work differs from prior
research on CTC between LoRa and ZigBee devices in the
Sub-1 GHz ISM bands by focusing on the characteristics of
LoRa in the 2.4 GHz bands. We introduces a novel approach
by leveraging neural networks to perform payload selection
at the transmitter. This enables the generation of the required
waveform for cross-technology communication. Our approach
uses the power of machine learning to dynamically select
the appropriate payload that results in the desired waveform
for successful communication between LoRa and ZigBee de-
vices in the 2.4 GHz ISM band. By using neural networks,
our solution can adapt to various communication scenarios,
learning the best parameters for the transmission and ensur-
ing that the generated waveform retains the necessary char-
acteristics for reliable demodulation at the receiver. This pro-
vides a more flexible and scalable solution compared to tra-
ditional methods, where signal emulation is often rigid and
predefined.

VIII. CONCLUSION

In this study, we introduce ZigRa, a novel approach aimed
at establishing direct communication from ZigBee devices to
LoRa devices. Our investigation involved a thorough analysis of
the characteristics of both LoRa and ZigBee networks. Through
empirical examinations, we scrutinized LoRa communication
from a cross-technology communication perspective, deriving
insights to inform the design of ZigRa. ZigRa facilitates long-
range cross-technology communication from ZigBee devices to
LoRa devices. We conducted extensive experiments to assess
ZigRa’s performance, and the results underscore its ability to
reliably transmit ZigBee communication to LoRa over distances
exceeding 500 meters-significantly surpassing the range achiev-
able with native ZigBee communication. Consequently, ZigRa
holds promise for addressing applications requiring long-range
communication by extending the reach between ZigBee and
LoRa networks.
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