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Abstract—Cross-technology communication is essential for the
Internet of Multimedia Things (IoMT) applications, enabling
seamless integration of diverse media formats, optimized data
transmission, and improved user experiences across devices and
platforms. This integration drives innovative and efficient IoMT
solutions in areas like smart homes, smart cities, and health-
care monitoring. However, this integration of diverse wireless
standards within cross-technology multimedia communication
increases the susceptibility of wireless networks to attacks.
Current methods lack robust authentication mechanisms, leaving
them vulnerable to spoofing attacks. To mitigate this concern, we
introduce DeepSpoof, a spoofing system that utilizes deep learning
to analyze historical wireless traffic and anticipate future patterns
in the IoMT context. This innovative approach significantly
boosts an attacker’s impersonation capabilities and offers a
higher degree of covertness compared to traditional spoofing
methods. Rigorous evaluations, leveraging both simulated and
real-world data, confirm that DeepSpoof significantly elevates
the average success rate of attacks.

Index Terms—Cross-Technology Communication, Internet of
Multimedia Things, Spoofing Attack, Deep Learning.

I. INTRODUCTION

CROSS-technology communication (CTC) [1] for the In-
ternet of Multimedia Things (IoMT) [2], [3] refers to

the seamless integration of multimedia content across diverse
technologies and platforms within the IoMT ecosystem. This
concept enables the exchange and processing of audio, video,
and other media types between heterogeneous devices, en-
hancing the user experience and functionality of IoMT appli-
cations [4]–[6]. Applications of cross-technology multimedia
communication in the IoMT range from smart homes, where
it facilitates multimedia sharing and control across devices, to
smart cities, where it supports real-time monitoring and data
analysis for public services. In healthcare, it enables remote
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patient monitoring, diagnosis, and surgical assistance. In the
field of Internet of Vehicles (IoV), CTC can be utilized to
monitor the status of important vehicle components in real
time for heterogeneous wireless devices employed in IoV,
predict possible failures, perform maintenance in advance, and
reduce the incidence of failures.

Entertainment and social media platforms also benefit from
this technology, delivering high-quality audio and video expe-
riences. The advantages of CTC for the IoMT include seamless
integration, which breaks down technological barriers and
allows for the free flow of multimedia content. It also offers
efficient data transmission, minimizing delays and bandwidth
consumption, crucial for real-time applications. Additionally,
this communication enhances user experiences by delivering
high-quality media content and enabling rich, interactive ex-
periences. Finally, it fosters innovation, enabling the develop-
ment of new and innovative IoMT applications that leverage
the power of cross-technology multimedia communication.

In the IoMT context, security has become a top priority [7],
[8]. The complexity of wireless environment and the prolif-
eration of smart multimedia devices have created significant
threats to wireless security [9]–[11]. Among various malicious
attacks, spoofing is particularly concerning. Spoofing attacks
exploit the open and shared nature of the communication
medium to transmit fraudulent data to victims, falsely pos-
ing as a trusted source. These attacks can lead to network
failure due to misleading information from the attacker [12],
[13]. So far, most attack strategies have been designed for
homogeneous networks [14], [15], where it is not feasible for
a WiFi device to spoof ZigBee devices in traditional designs.
However, the emergence of CTC techniques has removed this
constraint.

Like other wireless communication methods [16], [17],
CTC is vulnerable to malicious attacks, including sniffing and
spoofing. However, the spoofing techniques used in CTC differ
from traditional designs. While most conventional spoofing
strategies are designed for homogeneous networks where
signals from devices of the same type, such as ZigBee, are
spoofed by other signals in the same channel, with CTC, it
is feasible to use a WiFi signal to forge ZigBee information
and subsequently attack ZigBee devices. In the event of such
attacks, the applications developed using CTC may be severely
impacted, leading to fraudulent data or deceptive urgent events.
Therefore, it is essential to investigate the security of CTC to
ensure reliable and effective communication via CTC links.
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CTC techniques introduce new vulnerabilities that malicious
actors can exploit through spoofing, disrupting regular wireless
communication. However, pinpointing the exact moments for
spoofing attacks is a considerable challenge. This is due to
the unpredictable nature of wireless traffic patterns caused by
random backoff periods. In this paper, we introduce a cutting-
edge spoofing attack strategy that combines deep learning
and CTC techniques, named as DeepSpoof (Deep Learning
Spoofing). This strategy leverages the robust transmission
power and extended range of WiFi signals to target and spoof
ZigBee-embedded devices effectively. It’s worth mentioning
that our proposed approach is adaptable and can be applied to
other scenarios where multiple wireless technologies coexist,
highlighting its versatility and potential impact.

Our contributions are summarized as follows:
• We introduce a novel attack strategy called DeepSpoof,

which integrates deep learning techniques based on Long
Short-Term Memory (LSTM) with CTC technology. This
strategy transforms the spoofing attack into a time series
process by meticulously selecting the slot duration and
defining the status. This design facilitates easy implemen-
tation without requiring any modifications to the firmware
or hardware of both WiFi and ZigBee devices.

• A method is presented to enable parallel cross-technology
communications with DeepSpoof in ZigBee channels.
Specifically, a WiFi device is capable of simultaneously
spoofing the communication in two independent channels,
demonstrating the versatility of our approach.

• We develop a spoofing attack scheme that incorporates
deep learning to capture temporal patterns and predict
future wireless traffic. Our proposed scheme is evaluated
using a hybrid platform consisting of a USRP-N210 and
MICAz, providing empirical evidence of its feasibility.

The remainder of this paper is organized as follows. Sec-
tion II provides a review of the related work. Next, we
delves into the preliminaries of spoofing attack strategies in
Section III. In Section IV, we present the problem formulation
of this work. Section V provides the detailed information of
DeepSpoof design. Then, performance evaluation is presented
in Section VI. Finally, we conclude our paper in Section VII.

II. RELATED WORK

This section reviews the related work of our study with
respect to the following domains.
Spoofing Schemes for IoMT Networks. IoMT networks have
seen the emergence of numerous spoofing schemes in the liter-
ature. Specifically, in [18], [19], the authors comprehensively
examine spoofing attacks targeting wireless sensor networks,
reviewing detection techniques and countermeasures against
such threats. In [20], the authors propose a new attack method
called adversarial laser beam (AdvLB), which can perform
adversarial attacks on autonomous vehicles to recognize traffic
signs by manipulating the physical parameters of the laser
beam. FooLoc [21] fools WiFi CSI fingerprinting DNNs over
the realistic wireless channel between the attacker and the
victim access point (AP). In another study [22], an adversarial
transmitter-receiver pair assumes the roles of generator and

discriminator in a Generative Adversarial Network, engag-
ing in a minimax game to craft optimal spoofing signals.
Researchers proposed a novel adversarial attack framework
[23], and designed to generate adversarial malicious traffic
capable of deceiving ML-based traffic classification systems.
It exhibits a high evasion growth rate across multiple models
and datasets Furthermore, [24] delves into the theoretical
implications of ACK spoofing on rate control and transport-
layer protocols, constructing mathematical models to assess
throughput performance under attack conditions for Minstrel.

Anti-Spoofing in Homogeneous Networks. A considerable
amount of research has been devoted to crafting anti-spoofing
solutions for secure wireless device connectivity. For exam-
ple, Tomic et al. [25] introduced a mechanism that utilizes
physical data, including MAC addresses and signal strength
values, to identify and mitigate harmful spoofing attacks.
Meanwhile, Mahmood et al. [26] proposed a more secure user
authentication scheme using elliptic curve cryptography for
multimedia IoT. In [27], the authors designed an autoencoder
deep neural network (AENN) that minimizes unauthorized
access by predicting data transmission outcomes. An traffic
obfuscation method based on neural networks was proposed
in [28], which generates traffic distortions with minimal over-
head and computational cost but attains comparable obfus-
cation performance. Such obfuscation can effectively defend
eavesdropping or traffic analysis attacks. In another study,
Madani et al. [29] presented an innovative method utilizing
multi-model Long Short-Term Memory (LSTM) for spotting
MAC-layer spoofing attempts. Additional strategies include
PHY-layer authentication [30], Node Identification [31], and
the Beacon-Trap Approach [32]. It’s worth noting that these
works primarily focus on spoofing attacks executed within ho-
mogeneous networks using a single communication technique.

Cross-Technology Communications. ESence [33] introduced
the CTC technique, which aims to create an alphabet of
implicit messages by encoding CTC symbols using packet
lengths and duration information [34]. FreeBee [35] utilizes
packet timing for bidirectional communication between WiFi
and ZigBee devices. HoWiES [36] is designed to enable WiFi
radios to convey different messages to ZigBee radios while
using less energy. ZigFi [37] employs RSSI to capture inter-
ference signatures and facilitate communication from ZigBee
to WiFi. WEBee [38] and BlueBee [39] are practical CTC
designs that simulate through the physical layer [40], along
with other techniques like WiFi-to-Bluetooth [41] and LTE-to-
ZigBee [42]. WibZig [43] can accurately simulate any given
ZigBee symbol by selecting CCK codewords that exhibit
similar phase characteristics to the ZigBee chip. Waves [44]
utilizes WiFi to ZigBee CTC and adaptive transmit power
control technology of WiFi access points to achieve reliable
and fast data transmission in low duty cycle ZigBee networks.
In [45], the authors provide a comprehensive survey of CTC
techniques utilized in heterogeneous IoT networks.

Anti-Spoofing in CTC Networks. To counter spoofing at-
tacks in CTC, a collaborative mechanism between WiFi and
ZigBee devices is introduced in [46], leveraging physical
layer information and the One-Class Support Vector Machine
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(OSVM) algorithm for attack detection. MuZi [47] introduces
three mechanisms to mitigate WiFi interference: interference
assessment, channel switching, and connectivity maintenance.
However, these common security measures may not be suffi-
cient to thwart certain attacks. Given the growing popularity
of deep learning, this paper introduces a novel approach for
launching spoofing attacks using deep neural networks, aiming
to achieve the highest attack success rate.

In traditional methods [48], reactive attacks only launch
attacks when specific signals (such as ZigBee MAC frame
headers) are detected, which require extremely high real-time
performance. Therefore, in complex network environments,
this attack method is less efficient; Random attacks waste
a lot of time and energy trying various possibilities, only a
few of which may succeed, which results in a huge waste
of resources and is extremely inefficient. In this paper, we
introduce a cutting-edge spoofing attack strategy that combines
deep learning and CTC techniques. This strategy leverages
the robust transmission power and extended range of WiFi
signals to target and spoof ZigBee-embedded devices effec-
tively. Compared with existing research [49], the probability
of successful spoofing attacks is increased by 21.8%.

III. PRELIMINARIES

A. Bidirectional CTC between WiFi and ZigBee

ZigFi [37] carefully overlaps ZigBee packets with WiFi
packets and convey data from ZigBee to WiFi without modify-
ing the WiFi or ZigBee physical layer by encoding the data by
different WiFi Channel State Information chirps with different
indexes of the starting channel. WEBee [38] is the first work
based on physical-layer to achieve direct communication from
WiFi to ZigBee. One possible approach is for a WiFi device
to intricately construct its frame payload, resulting in an RF
waveform that mimics ZigBee signals. In this scenario, the
preamble, header, and trailer of the WiFi frame will be disre-
garded by the ZigBee receiver and treated as noise. NetCTC, as
presented in the study by [50], proposes a real-time interaction
mechanism that enables dependable, transmission-efficient,
and simultaneous interactive communication among diverse
devices. Besides many others that concurrent interactive com-
munication among heterogeneous devices [50]. Fig. 1 plots the
networking support for bidirectional CTC.

According to Cisco’s predictions, the number of WiFi
hotspots will reach approximately 600 million, with a 53%
accessibility rate in major urban centers. WiFi technology
can leverage its extensive bandwidth to acquire sufficient
computational resources for processing and analyzing the
vast and intricate data received from ZigBee networks. It
can also perform specialized operations, such as spoofing
attacks, which are unique to this communication technology.
Since all nodes in the ZigBee network are homogeneous, a
ZigBee device can only spoof other ZigBee devices. The WiFi
device’s transmission range extends nearly 300 meters with
a transmission power of 100 milliwatts (-20 dBm), which is
significantly greater than that of the ZigBee device (MICAz),
which has a range of less than 70 meters and a transmission
power of 1 milliwatt (0 dBm).
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Fig. 1. Cross-Technology Communication between WiFi and ZigBee.

B. The Motivation of DeepSpoof

In the IoMT networks, CTC communication is vulnerable
to malicious attacks. It is feasible to use WiFi signals to
forge ZigBee information and conduct spoofing attacks. Once
such attacks occur, applications developed using CTC will
be seriously affected. In the multimedia Internet of Vehicles,
malicious attacks may lead to incorrect vehicle decisions
and endanger life safety. In multimedia healthcare, malicious
attacks may interrupt medical services and cause serious harm
to patients. In multimedia smart homes, there are some security
threats that can Affects home privacy, security and comfort.

Although CTC is a relatively new technology, there has
been limited research on its security vulnerabilities. This paper
introduces a novel approach for launching spoofing attacks
using deep neural networks in IoMT networks, aiming to
achieve the highest attack success probability. This approach
highlights the need for more robust security measures in CTC
networks and aims to contribute to the growing body of
literature on the security of this technology. By utilizing deep
learning algorithms, we hope to assist in the development of
more effective security measures that can keep pace with the
evolving threat landscape.

C. Trade-Off between the Benefits and Costs of DeepSpoof

In this study, we propose utilizing a WiFi device to launch
a powerful spoofing attack on ZigBee devices. However, this
method has the potential to disrupt normal WiFi communica-
tion. The decision to employ WiFi communication in pursuit
of a powerful spoofing attack on ZigBee devices must be
carefully balanced against the potential costs. On one hand,
this approach offers the advantage of a high-powered attack
capable of targeting multiple ZigBee devices. This can be
particularly beneficial in scenarios where the attacker aims to
compromise a large number of ZigBee devices or to execute
attacks over a wide area. On the other hand, disrupting WiFi
communication may pose challenges if it is essential for the
operation of other devices within the network.

It’s important to note that existing WiFi infrastructure can
be efficiently leveraged to manipulate and interfere with sensor
networks using standard WiFi devices. This eliminates the
need to acquire a ZigBee device solely for spoofing purposes,
as any WiFi device can be exploited using cutting-edge tech-
nologies. In other words, we don’t have to deploy dedicated
WiFi devices for spoofing ZigBee devices; we can instead
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utilize existing devices for malicious intent. Consequently, the
decision to employ WiFi communication in exchange for a
powerful spoofing attack on ZigBee devices depends largely
on the specific circumstances and the attacker’s priorities. A
thorough assessment of the trade-offs involved is essential
before proceeding with such an approach.

IV. PROBLEM FORMULATION

In this section, we first present the fundamental concepts
of the time-slot model for ZigBee and WiFi devices. We then
delve into an analysis of the slot status for both ZigBee and
WiFi devices, as well as an overview of the DeepSpoof basics.

A. Time-Slot Model for ZigBee and WiFi Devices

In energy-constrained sensor networks, the utilization of a
time-slot model is a common practice for commercial off-the-
shelf (COTS) devices, serving to conserve energy, minimize
energy consumption, and prevent signal interference. A WiFi
Access Point (AP), being a wired device with a constant
power supply, has the capability to frequently broadcast mes-
sages within its coverage area without any energy constraints.
However, in our design, we must consider the coexistence of
WiFi devices with other COTS devices, such as Bluetooth and
ZigBee, within the same ISM band. The potential for WiFi
signal interference with ZigBee communication is significant,
leading to disruptions or intrusions in legitimate data trans-
missions of ZigBee devices when the WiFi device occupies
the channel. Consequently, we propose the implementation
of a time-slot model for WiFi devices to facilitate spectrum
allocation analysis.

In [51], the authors introduce the time-slot scheme to WiFi
networks. It’s noteworthy that, despite its random channel
access mechanism for exceptional spectral efficiency, tradi-
tional WiFi technology does not incorporate time-slotting. In
specific scenarios, time-slot models can be applied in WiFi
technology to achieve specific objectives. One such scenario is
the communication between IoT heterogeneous devices, where
WiFi and ZigBee devices coexist. The authors in [52] propose
time-slot schemes that enable WiFi to predict the status of
ZigBee devices, thus enabling more effective management of
network resources. These time-slot schemes are based on the
observation that ZigBee devices utilize a duty-cycle strategy,
alternating between active and dormant states to regulate en-
ergy consumption. By predicting the status of ZigBee devices,
WiFi can avoid collisions and enhance network performance.

B. Slot Status for WiFi and ZigBee Devices

In our model, we make an assumption for the wireless
network without any loss of generality. Firstly, we consider
the duration of the periodic working schedule of a device as
t, for example, one minute, etc. Secondly, for each working
schedule, it is generally split into a sequence of time instances
with length τ , which is the unit of working time for an activity.
We emphasize that the slot duration τ is equivalent to half of
the time required to transmit the maximum MAC frame length,
where the maximum size is 127 bytes as specified in 802.15.4.
Fig. 2 illustrates the time slots for WiFi and ZigBee devices.

Dormant

WiFi  

 ZigBee

Send Receive

Fig. 2. Time slots for WiFi and ZigBee device.

In the time-slot model, we initially focus on the time-slot
division of ZigBee devices. In wireless sensor networks, de-
vices with a duty cycle that regulates energy consumption can
only be in two states: active and dormant. In the active state,
a device can transmit or receive packets, while in the dormant
state, it turns off all its modules except for a timer that wakes
it up. Therefore, all devices must regularly alternate between
active and dormant states depending on task requirements
or preparatory arrangements. In synchronous MAC protocols,
each sensor knows the working schedules of other sensors
and instructs them to join the neighbours’ working-schedule
table before establishing communication paths. As a result,
for a sensor device, its activities are not random, and its
working-schedule statuses are relatively stable, aligning with
our DeepSpoof concept that predicts the optimal action in the
future slot based on past slot observations.

The assumption that both WiFi and ZigBee share the same
time-slot model with identical slot durations is not only prac-
tical but also feasible, despite their varying data transmission
rates and duty cycles. It is crucial to emphasize that this time-
slot model, with its identical slot duration, serves as a simple
yet effective means of dividing up communication time into
distinct time intervals or slots. Both WiFi and ZigBee employ
this model for data transmission, enabling multiple devices to
share the same communication channel without causing any
interference. In fact, the distinct data transmission rates and
duty cycles of WiFi and ZigBee do not prevent their utilization
of the same time-slot model. On the contrary, the time-slot
model offers a distinct advantage: it enables devices with
different data transmission rates and duty cycles to coexist
on the same channel without generating any interference.

In practical wireless networks, WiFi and ZigBee devices
often exhibit distinct data transmission rates and duty cycles.
Despite these inherent differences, it remains both feasible
and practical for both types of devices to adopt a unified
time-slot model with identical slot durations. This strategic
approach effectively divides the available communication time
into discrete intervals or slots, which can then be seamlessly
utilized by both WiFi and ZigBee for data transmission. While
WiFi typically boasts a higher data transmission rate and duty
cycle in comparison to ZigBee, the time-slot model ensures the
harmonious coexistence of devices with diverse characteristics
on a shared communication channel, without any mutual inter-
ference. Consequently, the assumption that WiFi and ZigBee
can operate within the same time-slot framework is not only
intuitive, but also conducive to the efficient and optimized use
of the common communication channel.
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Fig. 3. An example of DeepSpoof basics from a WiFi to ZigBee devices.
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Fig. 4. The WiFi α attempts to capture the ZigBee signal and initiates
spoofing attacks.

C. DeepSpoof Basics

Despite WiFi devices’ impressive transmission range en-
abled by their high transmission power, the power of ZigBee
signals is insufficient to cause significant interference to WiFi
device. Consequently, WiFi device effectively captures only
the signals of neighboring ZigBee devices operating within
ZigBee frequency band. At the same time, it receives the
signal of WiFi α. However, only the signal of ZigBee β can be
picked up by WiFi α, as illustrated in Fig. 3. This arrangement
allows the WiFi device to monitor the wireless channel and
capture a limited signal from a segment of the ZigBee network.
By employing deep learning techniques, it can process these
captured signals to predict future actions.

As the attacker, the WiFi device is capable of executing
three distinct actions in each time slot: Dormant, Receive,
or Spoof (Send). When the WiFi device receives instructions
to impersonate the ZigBee devices, it initially shifts to a
receiving mode and promptly attempts to capture the ZigBee
signal. Subsequently, the WiFi device utilizes the observed
data to predict the optimal action to take in the subsequent
slot. Finally, the WiFi device transitions to a sending state
and broadcasts the spoofing signal, as illustrated in Fig. 4.
Specifically, if the WiFi device anticipates that the upcoming
slot of ZigBee devices will be a receive slot, it takes the
spoofing action by sending spoofing signals in this slot.
Otherwise, the WiFi device opts for the receiving action to
capture the ZigBee signal as much as possible or remains
dormant to conserve energy.

It is crucial to acknowledge that in certain instances, the
attacker may encounter uncertainty regarding the status of a
slot. For instance, if a ZigBee device is in the dormant state

instead of the receive state, the attacker may misinterpret the
situation and attempt to spoof, leading to a failed attempt as
the ZigBee device cannot accept the spoofing signal. In such
scenarios, the WiFi device can restore the original signal and
evaluate whether its prediction for the completed slot was
accurate, thereby enhancing the prediction model. Although
the computational capabilities of WiFi devices utilized in these
attacks are typically limited, they are wired devices with power
cords, and therefore do not face energy constraints. To execute
the deep reinforcement learning for spoofing attacks, a system
consisting primarily of a cloud computing server cluster and
an information service platform is utilized. The WiFi device
sends its captured data to the system and receives the results
calculated by the system based on the DeepSpoof algorithm.

V. DEEPSPOOF DESIGN

In this section, we first delve into the fundamental principles
of reinforcement learning (RL). We convert DeepSpoof into a
typical RL problem and use Q-Learning (QL) to determine
the best attack action in the future. Traditional QL obtains the
Q function in a table, resulting in a long convergence time.
Therefore, we use Deep Q Learning Network (DQN) to handle
the large state space. To capture the wireless traffic status over
long periods of time, we use an LSTM-based neural network
(DNN) to approximate the Q-function. Finally, we analyze the
utilization of DeepSpoof in parallel spoofing attacks.

A. Reinforcement Learning

Reinforcement learning involves learning how to maximize
rewards in the interaction between an agent and its envi-
ronment [53]. In this study, we reformulate the DeepSpoof
problem as a classic RL problem consisting of a four-tuple
< st, at, rt, st+1 >. At time t, the agent assesses the current
state st and selects the optimal action to execute. After
performing the chosen action, the agent receives a reward rt
and transitions to the next state st+1 through its interaction
with the environment. We define the slot states, attacker’s
actions, and rewards as follows:

1) Slot States: For each slot, the WiFi and ZigBee devices
can be in three potential states: Send, receive, or dormant. The
WiFi device lacks immediate knowledge of a slot’s status and
must predict it at the start of the next slot. The optimal action
for a given slot depends on the previous slots.

2) Slot States: The WiFi’s and ZigBee’s actions in
slot i are denoted by αi and βi, where αi, βi ∈
{SPOOF/SEND,RECEIV ER,DORMANT}.

3) Actions: The reward for action αi is defined based on
the channel status of slot i, which is expressed in Eq.1. The
reward is Rx(st, at). If αi=SPOOF and βi=RECEIVE, the
WiFi receives a reward Ri = 1 for successfully spoofing a
MAC frame of the victim. If αi=RECEIVE and βi=SEND,
the WiFi gets a reward Rj = 1 for capturing the signal of
ZigBee devices.

However, if αi=SPOOF and βi=SEND, the WiFi device
wastes energy on unnecessary spoofing and receives a negative
reward Rl = −1. If αi=RECEIVE and βi=RECEIVE, the
WiFi device misses a successfully transmitted MAC frame of
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Fig. 5. DeepSpoof test environment with a WiFi and a ZigBee device
switching in RECEIVE/SEDN/DORMANT states.

the victim and receives a negative reward Rm = −1. Other
cases for negative rewards are listed in Eq.1. If the signal is
delivered to the receiver, the reward value is ξ, ξ > 1.

Rx(st, at) =

 ξ
+1
−1

x ∈ {i, j, s, t,m,w} (1)

To optimize the spoofing attack, the WiFi device can adjust
the values of Ri, Rj , Rs, Rl, Rm, and Rw based on its
specific constraints. For instance, as the WiFi device typically
has access to a dependable power source, it can maintain its
radio receiver in operation for extended periods to capture
signals prior to launching the attack. Consequently, it may
adopt large absolute values for Rj . The reinforcement learning
approach for the spoofing attack is illustrated in Fig. 5, which
visualizes how the WiFi and ZigBee devices transition between
the RECEIVE/SEND/DORMANT states and employ deep
learning techniques to execute the attack.

The WiFi’s ability to determine if a prediction is accurate
suggests there is some form of data exchange between the
WiFi and other devices. To create distinct rewards for various
combined actions of WiFi and ZigBee, the authors likely
utilized a communication protocol that allowed these devices
to share information. One effective approach for WiFi to detect
the specific action of a ZigBee device involves the utilization
of the ZigFi [37] protocol. This protocol empowers ZigBee
devices to communicate not only with each other but also
with other devices, including WiFi routers.

When a ZigBee device executes a particular action, it
sends a command message to the other ZigBee devices in
the network. These messages contain details about the action
being taken, such as the type of device and the specific action

Fig. 6. The architecture of Deep Q-learning for DeepSpoof.

being executed. When a WiFi router receives a command
message from a ZigBee device, it can analyze the information
enclosed to determine the specific action being implemented.
The router then utilizes this information to compute the
appropriate reward for that action, based on the combined
actions of the WiFi and ZigBee devices. Consequently, WiFi’s
ability to determine the specific action of a ZigBee device
relies on the utilization of a wireless communication protocol,
such as ZigFi, that enables devices to exchange information
and interact with each other.

B. Deep RL of DeepSpoof

The tabular representation of the Q-function offers a
straightforward yet highly effective programming approach for
traversing all connections between time-slots and actions, aid-
ing in the identification of optimal actions. While Q-learning
excels in relatively simple scenarios, as the number of devices
increases and the network complexity escalates, achieving the
desired outcome becomes increasingly time-consuming. To
address this challenge, we employ deep learning as a function
approximator, expediting convergence to the maximum Q-
value. This approach is illustrated in Fig. 6.

In our design, we employ a Deep Q-learning network
(DQN) in reinforcement learning for DeepSpoof, utilizing the
maximum output to determine the optimal actions for spoofing
attacks. To address the challenge posed by the extensive state
space, we employ the Deep Q-Learning (DQL) technique. To
estimate the Q-function, we utilize a specialized Deep Neural
Network (DNN). The slot state serves as the input to the DNN,
while the Q-values resulting from the SPOOF and WAIT
actions in the slot constitute the outputs. Fig. 7 illustrates
the configuration of the DeepSpoof DNN architecture, which
consists of a single Long Short-Term Memory (LSTM) cell
and two Fully Connected (FC) Layers. Additionally, the figure
highlights the input and output dimensions for each layer.

The LSTM unit has the ability to capture long-term patterns
in wireless traffic. The state of a given time slot si incorporates
the channel conditions of the preceding slots. Given that earlier
slots can significantly impact the optimal action in slot i, we
have chosen to utilize the LSTM unit to memorize historical
slot information without increasing the dimensionality of the
slot state. The LSTM unit consists of four gates that maintain
a hidden state and compute the output. The hidden state is
influenced by the extensive input history and is continually
updated based on the most recent input.
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Fig. 7. DeepSpoof DNN architecture based on LSTM.

The four gates control how the hidden state is influenced
by the most recent input and how the output is affected by
the hidden state. As a result, the LSTM unit preserves the
long-term historical information of wireless traffic within its
hidden state, aiding in the prediction of optimal actions. The
output of the LSTM unit is fed into two fully connected
layers, with 20 and 5 neurons, utilizing the Rectified Linear
Unit (ReLU) as the activation function. The final output layer
is a linear fully connected layer that generates the Q-values
for SPOOF and WAIT actions. The input to the DQN is the
slot states of all sensor devices, and the outputs are the Q-
values, indicating which action sensors should take: SPOOF,
RECEIVE or DORMANT. The target or actual output value
must be continually calculated and updated until it achieves a
maximum output based on the Bellman equation. Thus,

Q(st, at) =Q(st, at) + α[Rt+1 + γ ·max
ã
{Q(s̃, ã)}

−Q(st, at)]
(2)

Eq. 2 represents the iterative process of Q learning.
Q(st, at) on the left side of the formula is the new Q value
after taking action at in state st. Q(st, at) on the right
side is the original Q value. Rt+1 is the reward obtained
after executing the action at. maxã{Q(s̃, ã)} represents the
maximum Q value of taking action ã in the next state s̃.
Since the sequence of experiences generated by the interaction
between the agent and the environment has a high degree
of temporal correlation, and using the same agent network
to generate the target Q value for the following state and
update the current state Q value simultaneously can easily
lead to network instability and non-convergence. Based on the
DQN method, we first establish an experience replay pool, and
store each Markov decision process at each time step as an
experience to update this replay pool. This process combines
past and current knowledge, reducing sample differences and
ensuring that the training samples can be fully utilized.

During training, only a certain amount of experience is
randomly selected from the experience replay pool as samples.
This approach effectively reduces data correlation, enhancing
learning efficiency by reusing experiences. Additionally, a
target network Q(st, at; θ) is introduced, which is identical
to the agent network, for estimating target Q values. The
parameter θ of the target network is updated every certain
number of steps, θ

′
represents the updated parameter. This

allows the Q values in the training process to be temporarily

Algorithm 1: Deep Q-Learning for DeepSpoof
input : Initial Q(s, a),R, replay buffer D
output: Max Q-value

1 for episode← 1 to M do
2 Initialize s;
3 for t← 1 to T do
4 with probability ϵ select a random action at;
5 execute action at in emulator and observe

reward rt;
6 set st+1=st;
7 store transition < st, at, rt, st+1 > in D;
8 sample random minibath of transitions

< st, at, rt, st+1 > from D;
9 if next station is terminal then

10 Target Q = R(s, a, s′);
11 else
12 Update critic by minimizing the loss:;
13 LQ(i, θ)= (Rt+1+ γ ·max

ã
{Q(s̃, ã; θ

′
)} -

Q(st, at; θ))
2 ;

14 Update the target network:;
15 α[Rt+1 + γ ·max

ã
{Q(s̃, ã)} - Q(st, at)];

16 end
17 end
18 end

fixed, making the agent learning process more stable. The final
agent network is trained by minimizing the loss function. The
formula for calculating the loss function is:

LQ(i, θ) =(Rt+1 + γ ·max
ã
{Q(s̃, ã; θ

′
)}

−Q(st, at; θ))
2

(3)

To prevent the agent from getting trapped in local minima,
we employ the ϵ greedy strategy during the training process.
This strategy allows the agent to explore its environment while
also exploiting its current knowledge. The value of ϵ starts at
0.1 and is gradually decreased by 0.1 at each iteration until it
reaches 0.0001. The calculation formula for ϵ is as follows:

a|s =
{

argmax Q(s, a) with probability 1− ϵ
any action a with probability ϵ

(4)
where, argmax Q(s, a) represents the maximum output of
the function Q(s, a). We then calculate this loss and employ
backpropagation, or stochastic gradient descent, to pass it
through the network and update the weights accordingly. The
algorithm is illustrated in the Algorithm 1.

C. DeepSpoof for Parallel Spoofing Attack

We conduct an analysis of the 802.11 a/g OFDM PHY
architecture. Both IEEE 802.11a/g and HIPERLAN/2 signals
are characterized as pulsed (or burst) type signals. These
signals occupy a total channel bandwidth of 20 MHz, with
an effective bandwidth utilization of 16.6 MHz. Each OFDM
symbol comprises 52 subcarriers, including 48 data subcarriers
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Fig. 8. Channels Mapping for Pilot Avoidance, where only channel 17, 19
can be spoofed by a WiFi signal.

and 4 pilot subcarriers. It is noteworthy that without hardware
modifications, the software alone cannot manipulate WiFi
signals transmitted on the pilot, null, or unused subcarriers.
As a result, when ZigBee devices operate within frequency
bands overlapping with these pilot subcarriers, their proper
functionality cannot be guaranteed.

To mitigate interference with these critical subcarriers in
WiFi OFDM, DeepSpoof introduces a channel mapping tech-
nique. This approach is visualized in the channel mapping
scheme depicted in Fig. 8. As an example, when the central
frequency of a channel is set to 2440 MHz, DeepSpoof enables
two parallel cross-technology communication streams with
standard ZigBee channels 17 and 19. This is achieved by
utilizing the WiFi OFDM data subcarriers within the ranges
[-21, -7] and [7, 21]. By configuring the center frequency of
a WiFi device to 2440 MHz, it can simultaneously transmit
packets to ZigBee devices operating in channels 17 and 19,
leveraging cross-technology communication techniques.

Importantly, many commodity WiFi radios, such as the
Atheros AR9485, AR5112, and AR2425, offer the flexibility
to adjust their central frequencies. This capability facilitates
the implementation of this approach on real-world hardware
equipment. Consequently, a WiFi device equipped with this
functionality can spoof communications in two independent
channels concurrently.

VI. PERFORMANCE EVALUATION

A. System Setting for WiFi and ZigBee Networks

Our DeepSpoof prototype leverages the USRP-N210 plat-
form equipped with 802.11 b/g PHY, as cited in [54], to
serve as the spoofer. Meanwhile, a MICAz receiver featuring
802.15.4 PHY, referenced in [55], assumes the role of the
victim. The fundamental physical message spans a length of
25 bytes, encompassing the following components: a 4-byte
preamble (00000000), a 1-byte SFD (7A), a 1-byte PHR, an-
other set of 4-byte preamble, a 1-byte SFD, a 1-byte PHR, a 7-
byte MAC header (consisting of 2-byte Frame Control, 1-byte
Sequence number, 2-byte Destination Pan Number, and 2-byte
Destination Address), a 4-byte payload, and a 2-byte CRC.
Fig. 9 illustrates the WiFi frame structure, where PHR signifies
the length of the MAC frame, set to 11001 (representing
25 bytes) in our experimental setup. Since beacons originate
from WiFi devices, the MPDU of the MAC frame omits the

WiFi payloadheader trailer

ZigBee frame

WiFi frame

Ignore IgnoreDemodulation

Preamble PHR ZigBee PayloadPreamble PHR

Frame

Control

Sequence

Number

Destination

Pan number

Destination

Address

Frame

Payload
FCS

Fi paylo

Fig. 9. WiFi frame format.

source address and source pan number. Instead, the destination
address is set to 0xFFFF, indicating a broadcast to all ZigBee
devices. Furthermore, the MAC payloads incorporate a 64-bit
timestamp encoding.

Fig. 10 illustrates the actual experimental setup we con-
ducted to evaluate our proposed system. This experiment
involved 20 MICAz nodes and a USRP N210 device equipped
with 802.11g PHY, all deployed within an office building span-
ning approximately 150m x 100m. The wireless environment
was highly complex. The USRP-N210 platform, along with its
802.11 b/g PHY, was employed as a WiFi access point (AP)
for simulation purposes. The USRP-N210 devices were solely
used for evaluation, enabling us to measure low-level PHY
information. The packets in this study were encoded using the
CTC technique, as detailed in [56]. Table I summarizes the
simulation parameters we utilized in our experiments.

In our simulations, the USRP-N210 device was only used
for evaluation purposes, but it could be replaced with a
commercial WiFi card, such as the Atheros AR2425, in a real-
world scenario. We assess our technique using both synthetic
and real measurements to demonstrate its practicality across
various datasets. Table I lists the parameter values utilized in
our simulations, including the energy consumption required
for running the circuitry and the energy per bit required for
transmission, , denoted as εelec and εfs or εamp, respectively.
We set εelec to be 50 nJ and εfs or εamp to be 10 pJ/bit/m2

or 0.0013 pJ/bit/m4 for the transmitting amplifier.

Fig. 10. Experiment setting.
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TABLE I
SIMULATION PARAMETERS

Parameter Name Value
Network area 150× 100 meter2

Number of sensor nodes 20
Beacon size 25 bytes

Eelec 50 nJ/bit

εfs 10 pJ/bit/m2

εamp 0.0013 pJ/bit/m4

d for ZigBee 50 meters

d for WiFi 300 meters

MAC protocol BoX-MAC [57]

TABLE II
EXPERIMENTAL PARAMETER CONFIGURATION

Parameter Name Value
Training steps 300000
Learning rate 0.001
λ 0.9
ϵ 0.01
Target network parameter update rate 0.0001
Experience playback pool unit size 300000

B. Evaluation Setup for Hardware and Software

We implemented DeepSpoof using TensorFlow 2.4. Tensor-
flow is a general deep learning framework that can effectively
process complex models, but may require a certain amount
of memory and processing power. To ensure minimal assump-
tions regarding the attacker’s capabilities, all experiments were
conducted on a commercial off-the-shelf (COTS) personal
computer featuring an Intel Core i7-3770 3.4 GHz CPU,
where all computations took place. For storage resources, the
experience replay pool needs to store a large number of state-
action-reward transfer records, which has certain requirements
for storage resources. This article uses a memory size of
32GB. However, as the attacker, WiFi can easily connect to a
remote cloud computing center, and the demand for computing
complexity and computing resources can be achieved.

During the training process of the Deep Q-Network (DQN),
the neural network utilized the Adam optimizer and the Recti-
fied Linear Unit (ReLU) activation function. he computational
complexity of DeepSpoof is mainly reflected in the use of
neural networks to calculate the Q value. The state space size
is S, the action space size is A, and B samples are drawn
from the experience pool for training to obtain the maximum
Q value. Considering that the total number of iterative updates
is N and the total number of neural network parameters is P ,
the final computational complexity is O(N ·S ·A ·B ·P ). Key
parameters involved in this process included the number of al-
gorithm training steps, learning rate, target network parameter
update rate, and the size of the experience replay pool. The
specific configuration details are outlined in Table II.

This study aims to develop a method for promptly detecting
and recognizing deception attack signals. To achieve this, we
trained the average reward values to reflect the level of con-
vergence during training. We used different learning rates to
obtain additional average reward values. As shown in Fig. 11,

Fig. 11. Convergence of the model under different learning rates.

we examined the convergence of the deep reinforcement learn-
ing model using learning rates of 0.001, 0.0001, and 0.00001,
respectively. The observed convergence indicates that the DQN
algorithm is capable of detecting spoofing attack signals from
WiFi devices. When a spoofing attack signal is detected,
ZigBee captures the signal through alternative channels and
relays it to the receiver. If the receiver successfully receives the
signal, the model is awarded a reward. Higher reward values
indicate greater robustness in detecting spoofing attack signals.

The broken line in the figure represents the actual reward
values obtained during each learning iteration, while the curve
represents the smoothed data. Fig. 11 demonstrates that dis-
tinct learning rates correlate with varying reward trajectories.
Specifically, with a learning rate of 0.001, the reward value
stabilizes at its peak and tends to converge after approximately
75 generations. Conversely, a learning rate of 0.00001 is too
low, resulting in the smallest reward values obtained. In the
case of a learning rate of 0.0001, the reward values fluctuate
within the range of 60 to 100 and converge after nearly 100
generations. Therefore, it takes approximately 100 steps for a
learning rate of 0.0001 to achieve convergence.

In deep reinforcement learning, the average training reward
is commonly used as an indicator of convergence during
training. Fig. 12 illustrates the convergence of average rewards
in both reinforcement learning and deep reinforcement learn-
ing throughout the training process. As shown in Fig. 12(a),
the rewards obtained by the DQN model remained relatively
stable during the initial 80 training iterations. However, be-
tween 80 and 100 iterations, the model underwent a phase
of intense exploration and learning, leading to a significant
surge in rewards. After 100 iterations, the cumulative reward
per training episode stabilized, while the reward per step
gradually decreased. Despite the occurrence of jumps in the
cumulative reward of each trial, these jumps indicate that
the model is indeed converging. Fig. 12(b) reveals that the
DL model exhibits a substantial range of reward fluctuations.
Although a convergence trend is visible in its smoothed curve,
it is relatively minor and the reward values remain low. In
contrast, the DQN model demonstrates superior performance
when compared to deep reinforcement learning.
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(a) Reward curve of DQN (b) Reward curve of DL

Fig. 12. Average reward curve for DQN and DL.
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(b) From WiFi beyond 50 m

Fig. 13. The spoofing attack success probability for WiFi device to spoof 20
ZigBee devices.

C. Experimental Results

We conducted a comprehensive experimental evaluation,
encompassing 100 rounds, to assess the success probability of
spoofing attacks. Fig. 13 illustrates the spoofing attack success
probability when the average duty-cycle of ZigBee nodes is
set to 10%. Our observations revealed that, with 10 ZigBee
devices within a 50m radius of the WiFi device, the average
attack success probability was approximately 81.8%. There
are some inherent flaws in CTC, so there are still cases where
spoofing attacks fail.

There are signal simulation errors in the implementation of
cross-technology communication from WiFi to ZigBee [43].
On the one hand, the error comes from WiFi cyclic prefix (CP),
which is a technology to eliminate inter-symbol interference
(ISI), that is, there will be a guard interval lasting 0.8us in each
WiFi symbol that is copied from the right side of WiFi and
covers the symbol on the left, so that the front end and back
end of the WiFi signal are the same, however the ZigBee I/Q
signal has no such duplication. On the other hand, the duration
of ZigBee symbol is 16us, while the duration of WiFi Symbol
is 4us. Therefore, a ZigBee symbol needs to be divided into
four parts for simulation respectively. This division will further
increase the simulation error. These are all uncontrollable in
signal simulation, which results in the preamble sent by WiFi
devices not being 100% recognized by ZigBee devices, further
reducing the success rate of spoofing attacks.

Nowadays, WiFi device energy usually has a stable power
supply, and the energy budget can be considered to be unlim-
ited. Therefore, WiFi devices can continue to attack without
interruption, posing a great threat to ZigBee secure com-
munication. However, this probability decreased significantly
to around 38.1% when the other 10 ZigBee devices were
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Fig. 14. The spoofing attack success probability with the distance to WiFi
device improved.

positioned beyond the 50m range of the WiFi device. This
analysis underscores that the WiFi device can only capture
signals from nearby ZigBee devices within its transmission
range. Consequently, direct analysis of information from the
10 neighboring ZigBee devices by the WiFi device enhances
the spoofing attack success probability. In contrast, predicting
the behaviors of the other 10 ZigBee nodes solely based on
received packets yielded relatively poorer attack performance.

Fig. 14 presents the average success probability of the
spoofing attack considering different positions of ZigBee de-
vices. The results indicate that the average success probability
of the attack increased with the average duty-cycle, reaching
approximately 83.6%, 88.5%, and 90.7% for duty-cycles of
5%, 10%, and 15%, respectively. These findings highlight that
ZigBee devices located further away from the WiFi device
have a lower probability of being spoofed, as their communica-
tion remains unaffected by the WiFi device’s eavesdropping or
interference capabilities. Specifically, ZigBee devices beyond
the transmission radius of the WiFi device are immune to
its spoofing attempts. Additionally, while DeepSpoof exhibits
robust performance in both busy and idle WiFi networks, it
may encounter challenges in low-duty-cycle networks where
training samples, particularly slots containing fraudulent trans-
missions, are limited. This scarcity can lead to prolonged
convergence times and subsequently inferior performance.

D. Spoofing Attack Comparison

To assess the effectiveness of DeepSpoof, we conducted a
comparative analysis of its spoofing attack success probabili-
ties with those of traditional spoofing attacks, as described in
Gao and Ning’s study [58]. The success probabilities of WiFi
devices executing spoofing attacks are influenced by the prox-
imity between the WiFi and ZigBee devices. Fig. 15 illustrates
the average success probabilities in spoofing attacks across
varying distances between ZigBee devices. It’s worth noting
that the maximum transmission power of the WiFi device can
reach up to 100 mW (-20 dBm), enabling a transmission range
of nearly 300 m. Conversely, the ZigBee device (specifically,
the MICAz model) has a maximum transmission power of 1
mW (0 dBm) and a transmission range of less than 70 m.
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Fig. 15. The average success probabilities of DeepSpoof and traditional
spoofing methods in scenarios where WiFi and ZigBee devices are located at
varying distances from each other.

Fig. 16. The average spoofing success probabilities of WiFi for 10 minutes.

Given the significant disparity in transmission ranges between
WiFi and ZigBee, a single WiFi device can scan a region
with multiple ZigBee nodes and execute a spoofing attack on
numerous sensors simultaneously.

In traditional wireless sensor networks that lack CTC tech-
nology, spoofer attacks are typically launched by exploiting
a captured common ZigBee node to deceive sensors. How-
ever, the limited transmission range of the ZigBee device
necessitates attackers to approach it as closely as possible.
This close proximity poses a greater risk of exposure for
the attacker and may not be feasible in certain applications
where physical access to the sensor network is restricted or
impractical. These constraints highlight the need for innovative
spoofer attack techniques that overcome distance limitations
and provide increased efficiency.

E. Parallel Spoofing Attack

Fig. 16 illustrates the probabilities of successfully spoofing
ZigBee devices using WiFi signals, considering identity num-
bers ranging from 1 to 8. The figure also shows a 5% duty
cycle between ZigBee channels 17 and 19. Our analysis of this
figure reveals an average probability of approximately 90% for
successful spoofing, with a slightly lower probability observed
on channel 19 compared to other channels. This variation
can be attributed to the differences in channel quality across
different frequencies. Additionally, as WiFi signals occupy
channels 16-20, ZigBee devices operating on channels 16, 18,

Fig. 17. Impact of Tx power setting for the spoofing attack success probability.

and 20 are unable to recognize or decode the received signals,
resulting in them being interpreted as noise. It’s worth noting
that WiFi devices have sufficient energy reserves and can oper-
ate with a 100% duty cycle, making them suitable candidates
for executing spoofing attacks against ZigBee devices.

F. WiFi Adjust TX Power Reference

We present an assessment of the attack efficiency of WiFi
devices across varying transmit power levels. Typically, at-
tackers strive for a high sending power and a raised reference
power to ensure a successful attack. The received signal
strength (RSS) is a metric that offers insight into the relative
strength and quality of the WiFi signal. It’s crucial to note that
RSS readings obtained at distinct physical locations are unique
and are influenced by various factors, including random noise,
environmental factors, and multipath effects. Consequently,
RSS readings exhibit strong spatial correlation characteristics.
The RSS value measured by a ZigBee device from a WiFi
access point (AP) can be mathematically expressed as:

P (d)[dBm] = p(d0)[dBm]− 10λ log10(d) (5)

where p(d0) represents the received signal strength in dBm
at a distance of d0 meters, with d0 typically set to 1 meter.
The variable d represents the distance between the transmitter
and receiver, while λ represents the propagation constant or
path-loss exponent.

To maximize the number of affected ZigBee devices, the
WiFi access point (AP) can enhance its coverage by increasing
the transmit power. We conducted a study to assess the impact
of transmit power on the likelihood of successful spoofing at-
tacks. We calculated the average probability of success across
various transmit (TX) power levels. Fig. 17 clearly illustrates
that the probability of successfully executing spoofing attacks
increases exponentially with increasing TX power. It’s worth
noting that when the reference power is set to a high value,
such as -40, the probability of success significantly improves.
Conversely, with a lower reference power, such as -75, the
probability of success remains consistently low. Our analysis
indicates that a higher reference power is preferred, but the
attacker must carefully balance the potential benefits against
the risk of detection. Setting the reference power too high can
lead to noticeable disruptions and raise the chances of being
detected. Fig. 17 supports our observations.
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VII. CONCLUSION

In this study, our primary focus is on the issue of spoofing
attacks in the heterogeneous Internet of Multimedia Things.
We introduce a novel approach called DeepSpoof, which
employs deep learning techniques based on LSTM and the
CTC method to address this challenge in complex wireless en-
vironments. Initially, we provide a comprehensive overview of
the background and theory behind DeepSpoof. Subsequently,
we present a time-slot model tailored for ZigBee and WiFi
devices, along with the fundamental principles of DeepSpoof.
Then, we implement an LSTM-based Deep Q-Learning ap-
proach to handle the vast state space and approximate the Q-
function for executing spoofing attacks. Finally, we validate
our entire methodology by simulating advanced malicious
spoofing attacks on a legitimate dataset.
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