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Abstract—Low-Power Wide-Area Networks (LPWANs) have
emerged as a promising communication technology for the
Internet of Things (IoT). However, frequency overlap among
wireless networks using different radio technologies creates
significant interference, compromising communication reliability.
This challenge is particularly urgent in LoRa networks, which
coexist in the 2.4 GHz ISM band with other IoT transmitters
capable of transmitting at much higher power levels. In our
study, we begin by providing a comprehensive understanding of
the LoRa physical layer (PHY), including insights into modula-
tion and demodulation mechanisms. Leveraging this knowledge,
we successfully implemented a real-time LoRa PHY on the
GNU Radio Software-Defined Radio platform. To address cross-
technology interference during peak detection, we introduce a
spectrum merging technique that maintains phase coherence be-
tween superimposed peaks, minimizing spectral leakage artifacts.
Beyond that, our analysis actively enhances the performance
of commercial LoRa devices. Furthermore, we systematically
explore the interference dynamics between LoRa and IEEE
802.15.4g networks. Our rigorous investigation reveals LoRa’s
ability to achieve high packet reception rates, even in the presence
of strong IEEE 802.15.4g interference.

Index Terms—LoRa, Signal Recovery, Networks Coexistence,
Cross Technology Interference

I. INTRODUCTION

LOW-POWER Wide-Area Networks (LPWANs) [1] are
designed for long-distance, low-data-rate communication,

making them highly versatile for a wide range of applications
within the Internet of Things (IoT) [2], [3]. Among the
LPWAN technologies, LoRa (Long Range) [4] stands out
as a prominent choice. LoRa excels in its communication
capabilities, facilitating data transmission across tens of kilo-
meters while maintaining minimal energy consumption and a
low Signal-to-Noise Ratio (SNR) [5], [6]. Moreover, battery-
powered LoRa nodes can remain operational for up to a

Demin Gao is with the College of Information Science and Technology &
Artificial Intelligence, Nanjing Forestry University, Nanjing 210037, China.
(e-mail: dmgao@njfu.edu.cn).

Ye Liu (corresponding author) is with the College of Artificial Intel-
ligence, Nanjing Agricultural University, Nanjing 210095, China (e-mail:
yeliu@njau.edu.cn).

Qiaolin Ye is with the College of Information Science and Technology
& Artificial Intelligence, the State Key Laboratory of Tree Genetics and
Breeding, and the Co-Innovation Center for Sustainable Forestry in Southern
China, Nanjing Forestry University, Nanjing 210037, China. (E-mail: yql-
com@njfu.edu.cn)

Honggang Wang is with the Department of Graduate Computer Science
and Engineering, Katz School of Science and Health, Yeshiva University,
New York, NY 10016 USA (e-mail: Honggang.wang@yu.edu).

decade, ensuring reliable and long-lasting connectivity [7].
Recently, Semtech has revolutionized the LoRa ecosystem
with the introduction of the SX1280 LoRa chip [8]. Operating
over the 2.4GHz spectrum [9], this chip offers extended long-
range capabilities, a significant advancement in the field. In
particular, LoRa is now a preferred solution in scenarios
requiring low-latency connections or in remote locations where
traditional networking solutions may be inaccessible [10],
[11].

In the realm of extended-range transmissions and con-
strained transmission power, LoRa devices face significant
interference challenges when operating in the 2.4 GHz spec-
trum [12]. The remarkable surge and ubiquitous embrace of
the IoT in recent years have been truly extraordinary. A
depiction of such a scenario, exemplified by a smart city. How-
ever, the wireless performance of such expansive networked
systems can suffer greatly when less powerful IoT devices
coexist with a multitude of wireless technologies, such as
WiFi, ZigBee, and Bluetooth, all vying for access within the
same spectrum [13]. This competition, particularly prevalent
in the 2.4GHz ISM band, often results in cross-technology
interference, leading to frequent transmission failures [14].

The research on LoRa cross-technology interference mit-
igation techniques has made significant progress. Frequency
Hopping [15] is a common wireless communication interfer-
ence mitigation technique that reduces long-term interference.
Channel Bonding [16] increases data transmission rates by
bonding multiple channels. Dynamic spectrum access [17]
allows wireless devices to dynamically select the best commu-
nication channel based on the current spectrum usage. Despite
the flexibility provided by DSA, it requires complex sensing
mechanisms and rapid decision-making algorithms, which can
be challenging in practical deployments. With the growth of
IoT devices, LoRa networks deployed in dense environments
face a variety of interference sources, including interference
from different wireless technologies such as WiFi and ZigBee.
These interference sources may overlap with LoRa signals in
time and frequency, increasing the complexity of interference
management.

The primary aim of this paper is not merely to mitigate
interference from wireless traffic, but rather to bolster the
coexistence of LoRa with other wireless networks that utilize
overlapping frequency channels. In this paper, we present
a new technique known as LoRaSR (LoRa Physical-Layer
Signal Recovery), which is designed to reconstruct LoRa
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signals. LoRaSR’s primary objective is to mitigate interference
among signal peaks and accurately recover peak characteris-
tics, such as position and height, which may be distorted by
Cross-Technology Interference (CTI). Our approach centers
on identifying the chirp peak that aligns with each window,
enabling the differentiation of peaks corresponding to different
packets based on these synchronized chirps.

Our contributions are summarized as follows:
• We provide an extensive elucidation on the demodulation

and decoding processes inherent to LoRa technology
within academic discourse. Subsequently, we achieve a
comprehensive real-time implementation of the LoRa
physical layer using the GNU Radio Software-Defined
Radio (SDR) platform.

• We are the pioneers in examining and quantifying inter-
ference patterns between LoRa and 802.15.4 networks at
a bit-level granularity. We introduce a spectrum merging
methodology where two peaks subjected to superposition
maintain phase coherence, ensuring the mitigation of
spectral leakage artifacts.

• The architectural conception of LoRaSR addresses the
considerable challenge of decoding data embedded within
LoRa chirps. Empirical results demonstrate the efficacy
of LoRaSR in achieving signal recovery under cross-
technology interference.

The remainder of this paper is organized as follows. Sec-
tion II reviews related literature. Section III provides prelimi-
naries. In Section IV, we delve into our insights on the LoRa
physical layer. Next, we introduce the proposed LoRaSR in
Section V. Performance evaluation results are discussed in
Section VI. Lastly, Section VII provides a summary of our
work.

II. RELATED WORK

In this section, we review the related work of our work with
respect to the following domains.
LoRa Sub-GHz and LoRa 2.4 GHz. LoRa, as the physical
layer technology behind LoRaWAN, has garnered significant
attention as one of the most successful low-power wide-area
network solutions for the Internet of Things [18]–[20]. Re-
search efforts [21]–[23] have explored its potential in diverse
applications, such as industrial networks [24]–[26] and smart
agriculture [10], [27], [28]. Comparative studies between LoRa
sub-GHz and LoRa 2.4 GHz in both indoor and outdoor
scenarios have been conducted [9], [29], shedding light on
the challenges that need to be addressed to fully exploit
this technology. Additionally, reverse engineering efforts have
provided insights into the fundamental principles of LoRa’s
PHY layer [30].
LoRa Performance Enhancement. Efforts to enhance LoRa
network capacity and throughput have led to the exploration
of collision decoding and weak signal decoding. These ap-
proaches [31]–[33] leverage the unique characteristics of LoRa
PHY demodulation to separate chirps and decode packets,
thereby mitigating collision and interference issues [34]. Stud-
ies [35]–[37] have also examined the performance of LoRa in
the presence of noise and interference, including the scalability

challenges faced by LoRaWAN, and algorithms for mitigating
interference among superposed LoRa signals [38].

Networks Coexistence. Coexistence studies have investigated
the interaction between LoRa and other wireless technologies,
such as ZigBee [39], [40] and Bluetooth [41], in the 2.4
GHz band. These studies explore message exchange protocols
and assess the impact of interference on LoRa-based wireless
links. Furthermore, investigations into cross-technology inter-
ference between LoRa and IEEE 802.15.4g networks have
been conducted systematically [42]. Performance analyses
of LoRa signals under interference from WiFi devices and
adjacent channel interference from LTE systems have also
been undertaken [12], [43]. Table. I provides a clear compar-
ison of various studies on LoRa performance enhancement,
network coexistence, and interference dynamics, highlighting
the differences in objectives, methodologies, and outcomes.

In contrast to previous research, which primarily focused
on avoiding channel interference, this paper delves into the
specific characteristics of LoRa within the 2.4 GHz frequency
bands and endeavors to recover LoRa signals under channel in-
terference. To the best of our knowledge, this study represents
the first exploration of LoRa signal recovery under interfer-
ence. The proposed framework, LoRaSR, capitalizes on the
physical properties of concurrent ZigBee/WiFi transmission
to decode LoRa packets, enabling LoRa devices to establish
connections with other LoRa devices. Thus, our investigation
serves as both a complementary and orthogonal contribution
to existing work in the field.

III. PRELIMINARIES

A. Cross-Technology Interference Background

In LPWAN technologies such as LoRa, cross-technology
interference is an increasingly severe issue. With the surge in
IoT devices, the 2.4 GHz ISM band has become increasingly
congested, with various wireless technologies such as WiFi,
ZigBee, and Bluetooth all competing for limited spectrum re-
sources. The frequency overlap among these technologies has
led to significant interference issues, affecting the reliability
of communication. Particularly in LoRa networks, since they
coexist with other IoT transmitters in the same frequency band,
and these transmitters may have much higher power levels, the
interference challenges for LoRa devices in the 2.4 GHz band
are particularly pronounced.

LoRa, as a LPWAN technology operating in the 2.4 GHz
band, is susceptible to interference from other technologies
operating in the same band. This interference not only affects
the demodulation of signals but can also spoof LoRa devices.
Therefore, signal recovery is crucial. To address this issue, we
propose two solutions: a spectrum merging method to reduce
spectral leakage artifacts and LoRa waveform reconstruction
to enhance signal integrity.

B. The Role of the SDR Platform in Interference Management

The flexibility of the SDR platform plays a key role in
managing and mitigating interference. The SDR platform can
dynamically adjust signal processing algorithms, which is
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TABLE I: Summary of Related Work on LoRa Performance Enhancement, Network Coexistence, and Cross-Technology Interference

Reference Objective Methods Results Novelty
Croce et al., 2020 [5] LoRa link behavior and cell

performance
Analysis of the LoRa
PHY layer

Insights into link behavior
and cell-level performance

Real-time LoRa PHY im-
plementation

Gao et al., 2021 [12] Coexistence of LoRa and WiFi Detection of extremely
LoRa weak signals

Enabled coexistence by
detecting weak signals

Spectrum merging tech-
nique

Orfanidis et al.,
2017 [42]

Interference between LoRa
and IEEE 802.15.4g

Systematic investigation
of interference dynamics

Revealed high packet re-
ception rates despite inter-
ference

Focus on in-band interfer-
ence

Gao et al., 2024 (This
Work)

Real-time LoRa PHY and
signal recovery under cross-
technology interference

Implementation of
LoRaSR (LoRa Signal
Recovery)

Demonstrated efficacy of
LoRaSR in achieving sig-
nal recovery

Real-time PHY and spec-
trum merging for robust
signal recovery

crucial for dealing with variable interference scenarios. More-
over, the high data throughput and MIMO capabilities of the
SDR platform are essential for advanced spectrum monitoring
equipment to identify and mitigate interference sources. In
our study, we leveraged the SDR platform to successfully
implement the LoRa physical layer (PHY) and introduced
a spectrum merging technique to address cross-technology
interference during peak detection. This technique maintains
phase coherence between superimposed peaks, minimizing
spectral leakage artifacts.

Additionally, our analysis actively enhances the perfor-
mance of commercial LoRa devices and systematically ex-
plores the interference dynamics between LoRa and IEEE
802.15.4g networks. The adaptability of the SDR platform
enables it to address various interference scenarios, including
multipath propagation, frequency-selective fading, and clutter
echoes, which can cause signal distortions leading to errors
in target detection and measurement. We discuss advanced
signal processing techniques, such as adaptive filtering, digital
beamforming, and interference cancellation algorithms, and
detail their implementation on the SDR platform.

IV. LORA PHY INSIGHTS

The LoRa modulation and demodulation schemes remain
proprietary, with limited theoretical explication available. Ex-
isting patent documentation often lacks the necessary depth in
mathematical equations and signal processing mechanisms. In
this section, we aim to bridge this gap by providing a com-
prehensive understanding of the LoRa PHY, including detailed
insights into its modulation and demodulation mechanisms.

A. Modulation

LoRa utilizes the Chirp Spread Spectrum (CSS) modu-
lation mechanism [44], renowned for its exceptional long-
range communication capability. This modulation technique
operates on the principle of linear frequency modulation,
where the chirp signal employed occupies a broad frequency
band. Essentially, CSS modulation entails the continuous al-
teration of the transmitted signal’s frequency over time, thus
forming a chirp waveform. This waveform is generated by
linearly sweeping the frequency of a carrier signal across a
specified time duration. Consequently, the signal’s frequency
experiences a constant rate of increase or decrease, resulting in
linear frequency modulation, as depicted in Fig. 1. Typically
associated with low data rates, CSS modulation ensures a
longer chirp period, enabling the signal to sustain an elongated
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Fig. 1: Chirp Spread Spectrum modulation involves the modulation
of a signal’s frequency, wherein the frequency either increases or
decreases at a constant rate.

transmitted waveform. This prolonged chirp duration enhances
the signal’s energy and augments its propagation capability
over extended distances.

Distinct symbols are distinguished by manipulating the
initial frequency in different chirp signals. The relationship
between the starting frequency f0 and the symbol value M
can be expressed as:

f0 =
M

2SF
×BW (1)

where, BW represents the channel bandwidth and SF repre-
sents the Spreading Factor (typically taking values from the set
{7, 8, 9, 10, 11, 12}). Throughout the entire modulation sym-
bol period, the baseband frequency fB(t) can be represented
as follows:

fB(t) =

{
f0 − BW

2 + kt , 0 ≤ t ≤ t1
k(t− t1)− BW

2 , t1 ≤ t ≤ Tsym
(2)

where, t1 = (2SF − M)/BW , Tsym = 2SF /BW , k =
BW 2/2SF . Once the signed frequency sweep signal fB(t) is
obtained, the subsequent step involves generating a sinusoidal
signal with a frequency adjusted to meet specific criteria.
Given the fulfillment of the integral relationship between phase
and frequency, the associated phase value of the signal φB(t)
is expressed as follows:

φB(t) =

{
f0t− BW

2 t+ 1
2kt

2

1
2k(t− t1)

2 − BW
2 (t− t1) + ψ(t1)

(3)

The phase at the end of the initial modulation segment, de-
noted by ψ(t1), serves as the starting phase for the subsequent
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Fig. 2: The implementation of CSS baseband for LoRa involves
transmitting a numerical value.

modulation segment to ensure signal phase continuity. The
fundamental principle underlying LoRa CSS demodulation
involves extracting the initial frequency of the signal after
removing a portion of the linear frequency sweep component,
thereby obtaining the corresponding code value, as shown in
Fig. 2. One conventional approach for LoRa CSS demodula-
tion involves multiplying the captured sampling signal by the
standard down-chirp signal to eliminate the linear sweep sig-
nal. Subsequently, an FFT operation is applied to the processed
signal to identify the code, allowing for the determination of
the current symbol value based on its frequency. Therefore,
the frequency expression of the signal can be represented
mathematically as follows:

fD(t) =
BW

2
− kt, 0 ≤ t ≤ Tsym (4)

Assuming an initial phase of 0, the CSS modulation signal
and the down-chirp signal corresponding to symbol value M
can be represented as follows:

SM (t) = ej2πφB(t), 0 ≤ t ≤ Tsym

SD(t) = ej2πφD(t), 0 ≤ t ≤ Tsym
(5)

B. Demodulation

After signal reception, the LoRa device necessitates signal
demodulation, a process that involves executing a multiplica-
tion operation between the received signal and the down-chirp
signal. This critical step enables the extraction of the trans-
mitted information from the modulated waveform, facilitating
effective communication across the intended frequency spec-
trum. We have observed that this method not only enhances
the signal fidelity but also optimizes the device’s performance
in diverse environmental conditions. We have,

sde(t) = SM (t)× SD(t) (6)

Since SM (t) is expressed as a piecewise function, each
segment of the piecewise function is delineated separately.
Assuming the symbol to be transmitted is denoted as S, the
baseband signal undergoes a frequency scan in the following
manner: in the first segment, the frequency is swept from
f0 − BW/2 to BW/2, while in the second segment, the
frequency is swept from −BW/2 to f0. This completes the
CSS modulation’s frequency linear scan across the entire
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Fig. 3: When the symbol value is 63, the signal spectrum within the
bandwidth BW .

symbol duration. For the interval 0 ≤ t ≤ t1, based on
Equation (5) and Equation (3), the signal to be demodulated
is as follows:

SM1(t) = ej2π((f0−
1
2BW )t− 1

2kt
2

(7)

According to the previous analysis, demodulating the
SM1(t) signal, it is multiplied with the down-chirp signal. In
0 ≤ t ≤ t1, according to Equation (7) and Equation (5), the
result SM1(t)SD1(t) is,

SM1(t)× SD1(t) = ej2πf0t (8)

From Equation (8), it is apparent that during the initial time
period, after the modulation signal undergoes multiplication
by the standard down-chirp signal, the influence of frequency
linear sweep is eliminated, leading to the ideal generation of a
sinusoidal signal with the frequency f0. Now, let us examine
the signal demodulation in the interval t1 ≤ t ≤ Tsym.

SM2(t)× SD2(t) = ej2π((f0−BW )t+φM1(t1)+φD1(t1) (9)

In Equation (9), the modulation signal undergoes multipli-
cation by the standard down-chirp signal during the second
time period, effectively canceling out the frequency linear
sweep. This ideally yields a sinusoidal signal with a frequency
of f0 − BW . Consequently, when the LoRa CSS-modulated
waveform is multiplied by the standard down-chirp signal, it
produces the output waveform and signal frequency. Due to the
limited transmission bandwidth in LoRa communication, dif-
ferent symbols have distinct starting frequency sweep signals.
This allows for the completion of the linear sweep across the
entire bandwidth throughout the symbol transmission duration.

Note that, when the symbol falls within the range of 0
to 2SF−1 − 1, the amplitude of the signal after FFT in the
frequency band of 0 ∼ BW is greater. Conversely, when
the symbol falls within the range of 2SF−1 to 2SF − 1, the
amplitude of the signal in the frequency band of −BW ∼ 0 is
larger after FFT. The analysis of Fig. 3 suggests that obtaining
the initial frequency of the LoRa signal within the range of
0 ∼ BW is sufficient for accurately computing the transmitted
data. This is crucial for practical LoRa-based communication
systems, indicating that precise estimation of the initial fre-
quency facilitates successful data retrieval without exhaustive
frequency measurements across the entire bandwidth.
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V. LORA SIGNAL RECOVERY UNDER
CROSS-TECHNOLOGY INTERFERENCE

Building upon these characteristics, we propose a new signal
recovery approach designed to mitigate the effects of cross-
technology interference in this section.

A. Theoretical Analysis of Cross-Technology Interference

Interference can often be described using mathematical
models where signal superposition, attenuation, and noise
levels are key parameters. In the case of LoRa, due to its use of
spread spectrum technology, the signal propagates over a wider
frequency range, making it more susceptible to interference
from other technologies. As signals propagate, they encounter
various obstacles and environmental factors that cause signal
attenuation. The long-distance propagation characteristic of
LoRa signals makes them particularly vulnerable to multipath
effects and obstruction by buildings in urban environments.

The design of LoRa signals takes into account the needs
for long-distance transmission and low power consumption,
but their performance may be affected in high-interference
environments. The LoRa signal requires precise demodulation
at the receiver, and any distortion caused by interference
can lead to demodulation failure. Interference signals may
overlay parts of the LoRa signal, preventing the receiver
from correctly identifying the signal’s initial frequency, thus
failing to demodulate correctly. Additionally, interference can
introduce additional noise, reducing the signal-to-noise ratio
of the signal and further affecting signal demodulation.

B. Cross-Technology Interference for LoRa

The transmission process involves emitting a wireless sig-
nal from the transmitter, which undergoes attenuation over
distance before reaching the receiver. Upon reception, the
signal appears distorted, often overlaid with other wireless
signals nearby. Subsequently, the signal undergoes decoding,
treating the collective ongoing signal transmissions as noise.
The success of decoding is a stochastic event, dependent on
factors such as desired signal strength, thermal noise levels,
and the intensity of interfering signals. The broadcast nature
of the wireless medium makes it inherently susceptible to
interference from spatially proximate concurrent transmissions
that overlap in both time and frequency.

This challenge is particularly accentuated in the ISM bands,
where the number and diversity of coexisting wireless net-
works continue to grow. Traditional coexistence strategies
primarily attempt to address interference by employing carrier
sense (a basic access mechanism that attentively accommo-
dates other transmitters) or transmission across orthogonal
channels. However, these approaches may make low-power
technologies more vulnerable to starvation or may become
impractical due to the limited availability of interference-
free channels, respectively. Our focus is on investigating
cross-technology interference. Specifically, we are examining
scenarios of in-band interferences, with particular attention
directed toward adjacent coexistence, as depicted in Fig. 4.

LoRa versus ZigBee  Coexistence Scenarios

Guard

Band LoRa
Channel 

overlap

Frequency

ZigBee Channel 

2MHz 1.625MHz

Fig. 4: Coexistence scenarios between LoRa and ZigBee in the 2.4
GHz ISM band.

It is worth noting that Physical-layer Cross-Technology
Communication (PHY-CTC) [45] enables seamless data ex-
change among diverse IoT devices, even with different tech-
nologies. If a ZigBee device’s waveforms resemble those of
a LoRa transmitter, LoRa receivers can decode the signals
accurately. However, cross-technology interference not only
disrupts LoRa signal demodulation but can also spoof LoRa
devices. Signal recovery is vital. To address this, we propose
two solutions: a spectrum merging methodology to reduce
spectral leakage artifacts and LoRa waveform reconstruction
to enhance signal integrity.

C. Spectrum Merging for Mitigating Spectral Leakage

We analyze the impact of interference on the transmitted
data signal during the time interval t2, as depicted in Fig. 5.
Fig. 5a illustrates a temporal graph showing the evolution of
a signal over time. The linearly increasing frequency function
f(t) is derived from a linear frequency sweep applied to a
signal with a bandwidth of 1625 kHz, spreading factor of
6, and sampling rate of 20. This signal is achieved through
baseband modulation of f(t). Fig. 5b presents a temporal-
noise profile, showing the absence of noise interference in the
interval 0-39.5 µs., with noise interference of 3.5 dB intensity
occurring in the interval 30-39.5 µs.

A spectral diagram is depicted in Fig. 5c. Typically, the
post-demodulation spectrum of the LoRa signal should display
a dual-peak pattern. However, the graph shows three distinct
peaks. In the temporal segment labeled as t1 (0-39.5µs), the
signal remains unaffected, while during t2 (30-39.5µs), noise
disturbance occurs (e.g., from a ZigBee signal, as shown in
Fig. 2b). Leveraging the robust anti-interference capabilities
inherent in LoRa modulation, if the noise peak remains
lower than the signal peak, indicating the noise’s inability to
overpower the signal, the receiver can still demodulate the
data by distinguishing between the signal and the noise. Thus,
successful signal demodulation is achieved.

Illustrated in Fig. 3a (Section IV-B), a segment of the
payload chirp containing frequencies exceeding half of the
bandwidth (BW/2) undergoes a realignment, causing them
to be down-shifted to the lowest frequency at −BW/2. This
realignment results in the emergence of two distinct frequen-
cies within the chirp output. To address energy loss during
peak detection, we design a Spectrum Merging Methodology
(SMM). This method involves transforming the spectrum
spanning (−BW, 0) by shifting the FFT output from the
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Fig. 5: Despite experiencing interference during the t2 time period,
the data decoding remains resilient and impervious to adverse effects.

negative frequency domain to the positive frequency domain
(0, BW ). As a result, the peak initially located at f0 − BW
in the original spectrum now occupies the frequency f0 (as
defined in Equation 8). Integrating the inverted spectrum with
the original one facilitates the accumulation of energy from
both FFT peaks. For this merging to be effective, it is crucial
that the two peaks subjected to superposition maintain phase
coherence, ensuring the mitigation of spectral leakage artifacts.

The analysis demonstrates that despite interference during
this temporal interval, the data decoding process remains
robust and unaffected, thanks to the SMM. This highlights
the inherent resilience of the LoRa communication framework
against interference, making it suitable for various practical
scenarios and demanding operational contexts. These findings
are particularly significant for applications relying on LoRa
technology, especially in environments where interference or
signal fluctuations are common due to environmental factors or
concurrent wireless systems. Therefore, the proven durability
of the data decoding mechanism against temporal interference
enhances the appeal and reliability of LoRa technology in
modern communication systems.

D. LoRa Signal Recovery through Waveform Reconstruction

The primary objective of waveform reconstruction is to
recover the LoRa waveform lost due to cross-technology in-
terference. The parameters SF and BW collectively determine
the angle θ formed by the LoRa waveform and the abscissa
(θ = (BW )2

2SF ). Hence, having access to a segment of the
LoRa waveform enables the theoretical reconstruction of the
entire waveform. We achieve waveform reconstruction by
carefully analyzing decoded bits, which are readily available
in software, ensuring compatibility with off-the-shelf LoRa
hardware.
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Fig. 6: Standard LoRa decoding amidst collisions generates multiple
frequency peaks, leading to confusion. LoRaSR eliminates these
interfering frequency peaks.

Initially, coded bits undergo a transformation into decoded
bits. However, heightened interference from cross-technology
signals compromises the efficacy of the channel decoder,
resulting in decoded bits that are not an accurate representation
of the coded bits. The coded bits are then mapped onto the
frequency domain, with each discrete LoRa signal occupying
a narrowband. LoRaSR employs fast Fourier transform (FFT)
as a pivotal step in waveform reconstruction. This transforma-
tive operation enables LoRaSR to intricately reconstruct the
original information encoded within the transmitted signals.

All waveforms, including LoRa, ZigBee, BLE, and noise,
are multiplied with a standard down-chirp signal and subjected
to fast Fourier transform (FFT). Following the de-chirp FFT
process, each signal generates distinct peaks at different fre-
quencies at the LoRa receiver. LoRaSR exploits signal charac-
teristics between ZigBee/BLE and LoRa, allowing it to discern
and isolate these signals. ZigBee/BLE and LoRa frequencies
differ, with ZigBee waveforms typically occupying frequencies
of ±500kHz due to a signal tone period of 2µs. Assuming an
FFT time window of 80µs, the frequency resolution of the FFT
is fres = 1/80µs = 12.5kHz. Consequently, the locations of
ZigBee peaks can be calculated as f1 = ±500/12.5 = ±40.
Fig. 6 illustrates the scenario where ZigBee and LoRa peaks
can be distinguished.

For a LoRa symbol, the number of possible peak locations
depends on the symbol cardinality, which defines the size of
the symbol set. For instance, if a LoRa symbol corresponds
to two bits, there will be four possible peak locations: the
0th, 32th, 64th, and 96th FFT bins when the FFT size is set
to 128. The frequencies of BLE waveforms typically range
within ±250kHz due to a frequency deviation of 250kHz
in GFSK modulation. Therefore, the locations of BLE peaks
are calculated as f1 = ±250/12.5 = ±20. In this scenario,
ZigBee/BLE peaks will not overlap with LoRa peaks, making
them easily distinguishable.

VI. EVALUATION

In this section, we conduct comprehensive experiments to
assess the performance of LoRaSR across different scenarios.
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Fig. 7: Experimental Testbed of LoRaSR.

A. Hardware

Fig. 7 illustrates the experimental setup of the LoRaSR
system. In our experiment, Additive Gaussian White Noise
(AWGN) [46] and ZigBee serve as interference signal sources
to disrupt the LoRa signal. While we use ZigBee as an
example in this paper, the methodology is applicable to
other interference scenarios as well. Other communication
technologies such as WiFi and Bluetooth can also be utilized
as interference sources with similar effects. The LoRaSR
system is implemented using USRP-B210 platform with LoRa
PHY. The sender (i.e., ZigBee) operates on commercial chips,
specifically the Atmel AT86RF233 compliant with the IEEE
802.15.4g standard, with a default transmission power of
0dBm. The LoRaSR receiver (i.e., LoRa receiver, Semtech
SX1280 chip) employs a bandwidth of 1.625MHz and a
spreading factor of 8, with the channel frequency set at 2.4
GHz. Table. II summarizes the key parameters that were
utilized in the simulations and experiments described within
the document.

TABLE II: Simulation Parameters Summary

Parameter Value/Description
Bandwidth 1.625 MHz
Spreading Factor 7, 8, 9, 10, 11, 12
Channel Frequency 2.4 GHz
Transmission Power 0 dBm (for ZigBee transmitter)
Signal Strength 30 dBm (for LoRa signal in tests)
Noise AWGN, SNR of 10 for some tests
Sampling Rate 20 (assumed from context)
FFT Size 128

The GNU Radio framework serves as the core software
for our SDR platform. GNU Radio is an open-source toolkit
that provides a wide array of signal processing blocks and
allows for the rapid development of SDR applications.We
utilized Python as the primary programming language for
developing the LoRa physical layer and other custom signal
processing modules due to its versatility and the robust support
it offers for integrating with GNU Radio. The LoRa physical
layer was implemented by developing custom modules in
GNU Radio that emulate the modulation and demodulation
processes specific to LoRa. These modules include the CSS
modulator and demodulator, which are essential for generating
and recovering LoRa signals. The CSS modulator linearly
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Fig. 8: The LoRa signal experiences time-domain interference from
Additive White Gaussian Noise (AWGN) with increasing noise
duration, while maintaining a constant amplitude of 4 dB.

sweeps the frequency of the transmitted signal, while the
demodulator performs the inverse operation to retrieve the
original data.

B. LoRa Signal under Cross-Technology Interference

Fig. 8 illustrates the interference of the LoRa signal in the
time domain by AWGN. Fig. 8b depicts a time-noise plot,
showcasing interference caused by a 4dB noise during the t2
period (30µs ∼ 79µs) of the signal when the transmission
symbol value is set to 80. Meanwhile, Fig. 8a presents a
spectrum diagram. During the t1 period (0 ∼ 30µs), the
signal remains undisturbed by interference, while during t2,
it encounters 4dB noise. Since the noise peak is lower than
the signal peak during this period, the receiver can utilize the
signal-noise difference for demodulation, enabling successful
signal recovery. The time-noise plot in the figure delineates
the interference period (20µs ∼ 79µs) with 4 dB noise when
the transmission symbol value is 90.

From Fig. 8c, during the t1 period, the signal remains
undisturbed by interference, whereas during t2, it encounters
4dB noise. Since the noise peak surpasses the signal peak
during this period, the receiver cannot differentiate the data
from the noise, leading to unsuccessful demodulation. These
experiments demonstrate that as the symbol value increases,
the duration of noise interference during t2 also increases.
Consequently, the signal weakens progressively, eventually
succumbing to noise dominance, rendering it undecodable.

Fig. 9 illustrates changes in signal and noise intensities
following reception and modulation by the receiver. This
change coincides with an increase in noise interference ampli-
tude while maintaining a constant duration. Despite this, the
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Fig. 9: The signal and noise intensities following reception and
modulation by the receiver.
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(b) ZigBee signal

Fig. 10: The time spectrum diagram illustrating both the LoRa and
ZigBee signals generated during the simulation.

signal intensity remains relatively stable, displaying a consis-
tent trend upwards. Fig. 9b demonstrates a scenario where
noise intensity remains constant, while an extension of noise
interference duration leads to noticeable fluctuations in both
signal and noise intensities post-reception and modulation.

In this context, a notable observation arises: the prolonga-
tion of noise interference duration leads to a decline in signal
strength. Particularly, from 0 to 10 µs, the signal strength grad-
ually diminishes due to increasing noise interference, resulting
in amplified noise intensity. Subsequently, spanning 10 to 79
µs, noise intensity exhibits minimal variation, indicative of
LoRa’s inherent anti-interference properties. At this juncture,
once noise intensity reaches a threshold, it stabilizes, reflecting
LoRa’s resilience against interference.

C. LoRa Signal Experiencing Interference from ZigBee Signal

We utilized the ZigBee signal as an interference source
to examine the demodulation process of individual LoRa
symbols. To elucidate the interference impact on LoRa demod-
ulation, we conducted symbol-level modulation and demodu-
lation simulations. The simulated environment featured LoRa
parameters: BW = 1625 kHz, SF = 7, and a central frequency
of 0 Hz, with a signal strength set to 30 dBm. Gaussian white
noise with an SNR of 10 was introduced to emulate real-world
conditions. The experimental setup is illustrated in Fig. 10.

To initiate our investigation, we introduced interference
into the LoRa signal using a ZigBee signal with a power
of 30 dBm, as depicted in Fig. 11. Sub-figures (e-h) within
Fig. 11 displayed the resulting frequency domain character-
istics after multiplying the LoRa signal by the descending

edge signal. Simultaneously, sub-figures (a-d) within the same
figure illustrated the extent of frequency domain coverage of
the interfered LoRa signal, ranging from 0% to 100%. Upon
examination of sub-figures (e-h) in Fig.11, it became evident
that despite varying degrees of interference coverage, the
demodulation process exhibited minimal discernible impact.
The transmitted LoRa symbol could still be readily identified
by locating the highest column.

We next examined the demodulation process when the
latter half of a LoRa symbol was subjected to ZigBee signal
interference. In Fig. 12, ZigBee signals with power levels
ranging from 5 dBm to 45 dBm were introduced to interfere
with the latter half of the LoRa symbol. When the ZigBee
power was set to 5 dBm, as shown in (a, e) in Fig. 12,
the low ZigBee power had minimal impact on the LoRa
signal. However, with a ZigBee power of 45 dBm, multiple
prominent peaks emerged, as seen in (h), resulting in failed
LoRa demodulation.

Fig. 14 plots the LoRa signal experiences disruption due
to interference from ZigBee signals. The power of the LoRa
signal generated by the emulation is 30 dBm, and Gaussian
white noise with an SNR of 10 is added to it. we will use
simulated ZigBee signals to interfere with the LoRa signal.
As shown in Fig 14a, we gradually increase the frequency
domain of the interference signal ZigBee until the LoRa
signal appears in the time domain as half a symbol after
interference. In Fig 14b, it can be observed that right peak
keeps in the frequency domain, and the LoRa signal can be
also demodulated successfully.

D. Frame Reception Rate

In our study, we evaluated LoRa frame reception ratios
(FRR) in two distinct environments: a laboratory within a
building and an outdoor scenario. PRR is a critical metric
in wireless communication networks, as it directly indicates
the reliability of the network to deliver packets successfully.
It was selected to evaluate how effectively our proposed
solutions maintain communication reliability in the presence
of interference. With LoRa’s spectrum overlapping ZigBee’s
by 1/5, interference from ZigBee signals affected a portion
of the frequency band. Fig. 15 illustrates the average FRR of
LoRa frames across varying distances.

Despite a gradual decrease in FRR in noisy indoor environ-
ments, with rates dropping to around 95% between distances
of 100 to 500 meters, LoRaSR showcased a remarkable FRR
of over 93% even at a distance of 500 meters in corridor
settings. Across different locations and distances, LoRaSR
consistently achieved FRRs of 98% or higher, demonstrating
its ability to reliably collect data from various LoRa devices
and its compatibility with heterogeneous LoRa systems. These
results highlight LoRa’s resilience in data decoding despite
interference.

E. Symbol Error Ratios

Fig. 16 illustrates the Symbol Error Rate (SER) of Lo-
RaSR under various experimental setups, particularly scenarios
where the LoRa spectrum partially overlaps with the ZigBee
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(e) LoRa decoding Fig. 11a
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(f) LoRa decoding Fig. 11b
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(g) LoRa decoding Fig. 11c
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(h) LoRa decoding Fig. 11d

Fig. 11: The LoRa signal is interfered by ZigBee signal with different overlapped bandwidth
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(g) LoRa decoding Fig. 12c
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(h) LoRa decoding Fig. 12d

Fig. 12: The interference of the LoRa signal by the ZigBee signal occurs during the time period t2, with varying ZigBee signal strengths.

spectrum by fractions of 1/5 and 2/5. SER provides insight
into the bit-level accuracy of the demodulation process. By
assessing the SER, we can understand the precision with which
our signal recovery techniques can reconstruct the transmitted
symbols despite interference. Notably, LoRaSR consistently
demonstrates exceptional performance, maintaining a low error
ratio consistently below 0.3%, particularly evident within a
250-meter range. These findings emphasize the resilience
and reliability of LoRa signals, especially when configured
with narrower bandwidths, owing to their prolonged symbol
duration. However, challenges arise with increased distance,
leading to a noticeable decline in performance, highlighting the
complexities of accurately reconstructing LoRa signals over

extended distances.

F. In-Depth Analysis of Experimental Results

The experimental data revealed that in interference-free
or low-interference environments, the Packet Reception Rate
(PRR) of LoRa signals was very high, indicating the excellent
communication performance of LoRa technology under ideal
conditions. However, as the strength of the interference signal
increased, particularly when the power of the interference
signal approached or exceeded that of the LoRa signal, the
PRR began to decline significantly. This trend aligns with
our expectations and is consistent with existing literature,
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(f) LoRa decoding Fig. 13b
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(g) LoRa decoding Fig. 13c
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(h) LoRa decoding Fig. 13d

Fig. 13: The LoRa signal experiences interference from ZigBee signals of varying strengths, causing absolute overlap of the LoRa spectrum
with the ZigBee signal.
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Fig. 14: The LoRa signal experiences disruption due to interference
from ZigBee signals.
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Fig. 15: Frame Reception Ratios in the presence of LoRa-ZigBee
spectrum overlap by 1/5.

which suggests that the robustness of LoRa signals in high-
interference environments is limited.

The experimental results were largely consistent with the
predictions of theoretical models. At low Signal-to-Noise
Ratios (SNR), the demodulation process of LoRa signals
could accurately recover the signals, which is in line with
the anti-interference capabilities of LoRa’s CSS modulation
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Fig. 16: Performance of LoRa (Spreading Factor = 8).

mechanism. However, at high SNR, due to the peak of the
interference signal potentially exceeding the peak of the LoRa
signal, the demodulation process failed. This phenomenon
is in aligns with theoretical analysis, further validating the
effectiveness of our experimental design and execution.

VII. CONCLUSION

In this study, we conducted experiments to investigate
LoRa cross-technology interference under various conditions
and thoroughly analyzed the obtained results. Our research
entailed a comprehensive examination of LoRa characteristics.
Through empirical investigations, we identified incorrect sym-
bols, enabling the proposed LoRaSR to reconstruct complete
LoRa frames. Using a prototype implementation of LoRaSR
with the USRP B210 platform and standard LoRa chips, we
demonstrated the feasibility of this approach. In addition,
our study identified certain areas for allocating channels to
ensure reliable and efficient communication, particularly re-
garding channel allocation in adjacent areas. To address these
shortcomings, we conducted extensive experiments to evaluate
LoRaSR’s performance. The results affirm its ability to reliably
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transmit LoRa communication even in the presence of cross-
technology interference. Moreover, our findings suggest that
the proposed method holds significant promise for grazing
applications. We believe it offers a valuable perspective for
mitigating interference issues in LoRa across various scenar-
ios.
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