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AbstrAct
Noise pollution has been an issue since ancient 

times. Recently, this problem has been exacerbat-
ed due to rapid population growth and urbaniza-
tion. Noise mapping is a strategic action plan that 
visualizes the long-term and real-time noise pollu-
tion of our cities, industrial sites, and other regions 
of interest. This article first discusses the working 
principle of general model-based noise mapping 
and the lessons learned. Then, in-depth descrip-
tions of the technical challenges and design issues 
of noise mapping using mobile crowdsensing and 
acoustic sensor networks are presented. Finally, 
we provide our insights for future research direc-
tions regarding artificial intelligence assisted noise 
prediction, constructive interference for multime-
dia transmission, and simultaneous noise sensing 
and sound energy harvesting as well as inaudible 
sound attacks and defense.

IntroductIon
In recent years, the rate of urbanization has rap-
idly accelerated. Half of the global population 
has been living in urban areas, according to the 
World Urbanization Prospects, and the propor-
tion is estimated to increase to 68 percent by 
2050. Urbanization advances all aspects of our 
society, from infrastructure to public services. 
However, it also has many detrimental effects, 
one of which is noise pollution. Sufficient scien-
tific evidence has shown that noise pollution has 
negative impacts on people’s psychological and 
physiological health.

International organizations and governments 
have been making considerable efforts to mitigate 
this issue. For example, in 2002, the European 
Commission announced the Environmental Noise 
Directive, which requires its members to produce 
noise maps and update them every five years. The 
fourth round of noise mapping will be completed 
by 2022. Noise mapping is one critical application 
in smart cities because it has the following advan-
tages: 
• It allows us to gain a comprehensive under-

standing of invisible environmental noise in 
terms of sources, level, and distribution.

• It provides noise information that is acces-
sible to the public, thus allowing them to 
assess potential risks.

• It guides governments in developing noise 
reduction plans and preserving quiet areas. 

In October 2018, the World Health Organization 
released new environmental noise guidelines with 
the aim of prompting governments to evaluate 
noise exposure and implement sustainable poli-
cy actions. On the other hand, a significant num-
ber of researchers have studied noise pollution 
from the perspectives of human health effects [1], 
noise mapping technology [2], noise cancellation 
[3], and so on.

Noise mapping has traditionally relied on 
manual sound collection. Appointed workers 
periodically traveled to sites being investigated 
and collected noise samples using profession-
al devices. This data was then brought back to 
relevant departments for analysis and report. 
Large-scale noise mapping by manual sampling, 
without a doubt, is time-consuming, expensive, 
and sometimes dangerous. To address these 
issues, computational model-based noise map-
ping was proposed and has become the current 
main approach, because not only does it gener-
ate large-scale noise maps efficiently, it also pre-
dicts future environmental noise levels. However, 
the lessons learned from many years of practice 
include the fact that the computational mod-
el-based noise mapping approach poses several 
challenges, such as coarse-grained estimation, few 
simulation scenarios, static visualization, and mas-
sive computation burden.

As the next technological revolution, the Inter-
net of Things (IoT) [4] is expected to fundamentally 
overcome the above challenges. First, ubiquitous 
real-world sound sensing can be achieved by the 
huge numbers of intelligent equipment such as 
sensor nodes, smartphones, wearable devices, 
self-driving cars [5], and unmanned aerial vehi-
cles. Second, the collaboration between in-net-
work nodes, edge devices, and cloud platforms 
could make ubiquitous computing a reality. Third, 
cutting-edge technologies, for example, artificial 
intelligence (AI), big data, knowledge discovery 
and data mining, can significantly enhance the 
extraction of intelligence. It is evident that the IoT 
is transforming the implementation and capabil-
ity of noise mapping techniques, the ubiquitous 
sensing ability of which enables large-scale noise 
measurement. Fine-grained noise classification 
and dynamic noise mapping are enabled through 
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the capability of ubiquitous computing. Ubiqui-
tous intelligence facilitates people-centric noise 
visualization and data-driven noise mitigation. In 
summation, next-generation noise mapping is tak-
ing the form of smart city applications of merging 
IoT technologies.

In the rest of this article, we fi rst illustrate noise 
mapping based on computational models, along 
with the lessons learned. Subsequently, the state-
of-the-art noise mapping approaches are systemat-
ically overviewed. Possibilities for future research 
are presented next, followed by the conclusion.

bAckground
computAtIonAl model-bAsed noIse mAppIng

For the past decade, the computation method has 
been used to generate noise maps. The basic idea 
of this method is to exploit the acoustic emission 
behavior of noise sources and sound propagation 
characteristics to calculate sound pressure level. 
Figure 1 illustrates the working principle.

In the first step, two types of datasets are 
required as input data: sound source character-
istics and environment characteristics. Sound 
source characteristics are used to assess noise 
emission from road traffi  c, aircraft, and industrial 
production, while environment characteristics are 
required to assess noise propagation attenuation 
at receptors.

In the second step, sound pressure levels in 
predefined scenarios are calculated based on 
computational models. For example, the ISO 
9613-2 model describes the behavior of sound 
propagation attenuation in outdoor environments. 
The traffic noise model (TNM) version 3.0 was 
released in 2017 by the U.S. Federal Highway 
Administration (FHWA) for highway traffi  c noise 
modeling. Generally speaking, the noise emission 
of road traffic is modeled by traffic type, flow 
intensity, heaviness, and other parameters. Air-
craft noise emission is presented through the type 
of aircraft and fl ight track. Information regarding 
equipment type, sound power spectrum, loca-
tion, and directivity is used to model the sound 
power emission of industrial activities. In addition, 
atmospheric environment, ground type, barriers, 
and building refl ection are necessary to calculate 
noise attenuation at exposed people point.

In the third step, the impacts of noise pol-
lution are collected, such as the number of 
exposed people beyond limit values, the number 
of exposed dwellings, and the seriously affected 
areas. Information regarding people and dwell-
ings in certain areas can be obtained from geo-
graphic information systems (GIS) or professional 
socio-demographic datasets. Finally, noise maps 
are generated to guide plans of action and help 
the public understand the situation.

lessons leArned
One of the lessons learned from the computa-
tional model-based method is that coarse-grained 
estimation due to several parameters are required 
to calculate sound pressure level, but in many 
cases, such parameters cannot be fully accurately 
obtained. In addition, the investigated scenari-
os are usually predefi ned, and thus only simulate 
general ambient noise. In fact, abnormal noise 
events (e.g., road work, traffic jams and festive 

activities) are also of interest. Unfortunately, the 
simulation results do not include this part of sound 
noise. The second lesson learned is the small 
number of simulation scenarios. Noise models 
for road traffi  c are well studied [6], but the public 
is also frequently exposed to social noise, con-
struction, and industrial noise, which are diffi  cult 
to accurately model. Furthermore, noise models 
pertaining to indoor environments are expected 
to be comprehensively investigated. Other les-
sons learned include static visualization and the 
massive computation burden since, in central plat-
form, massive data computation and processing 
are required to generate large-scale noise maps. 
Regarding dynamic visualization, frequent input 
data updates are also diffi  cult.

stAte-oF-the-Art
sound mobIle crowdsensIng

Mobile devices, smartphones especially, have 
become necessities in our daily lives. People use 
smartphones to take photographs, record videos, 
and upload these to online social networks. Many 
interesting applications are available on smartphones 
that take advantage of various types of sensors 
included. In addition, the number of smartphone 
users will reach to 6.1 billion in 2020, which consti-
tutes 70 percent of the world’s population. These 
facts make a crowdsensing paradigm possible.

For noise mapping applications, environmental 
noise and the eff ects on people’s health could be 
monitored through smartphones, smart watches, 
and smart bracelets. An embedded microphone is 
able to record sounds in the users’ surroundings. 
Location information can be obtained via global 
navigation satellite system (GNSS), compasses, 
and wireless signals. Users’ experience of a certain 
place can also be captured through photographs 
and videos. Furthermore, heart sensors are able to 

FIGURE 1. The working principle of computational model-based noise mapping.
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monitor users’ health conditions in real time. After 
collecting the multi-scale data, powerful neural 
engines and processors on smart devices can cal-
culate the sound pressure level and recognize 
sound sources. The results obtained from all par-
ticipants are then aggregated in the cloud server 
through WiFi or 5G communication. Finally, the 
information is visualized on mobile applications. 
In this way, the public can understand the situa-
tion of one location or region.

technIcAl chAllenges
Crowdsensing technology enables all members 
of the public to be involved in noise monitoring 
and thus obtain a comprehensive understanding 
of the environment in which they live. Such an 
understanding can also increase public aware-
ness and prompt people to actively reduce noise. 
However, much progress must be made before 
crowdsensing technology can be adopted for 
noise mapping. Six technical challenges are dis-
cussed as follows.

Noise Measurement Accuracy: The practica-
bility of using smartphones instead of profession-
al sound level meters for noise assessment was 
studied. Enda et al. [7] conducted a detailed eval-
uation of the measurement accuracy of mobile 
devices and noise monitoring applications. Seven 
iOS and Android applications were tested on 100 
smartphones from six manufacturers. The results 
show that there are limitations to measure ambi-
ent noise using smartphones, especially back-
ground noise and high sound pressure. Moreover, 
the different applications and mobile device mod-
els affect measurement accuracy. 

Positioning Accuracy: Accuracy is also reflect-
ed in position. Normally, positioning precision of 
mobile phones is approximately several meters. 
But in crowded urban areas and indoor environ-
ments, the accuracy could deteriorate due to the 
attenuation of satellite signals. As a result, incor-
rect noise situations are mapped with inaccurate 
noise values and positioning errors. The cross-cal-
ibration of noise level and position through multi-
source data fusion could be a method by which 
to increase the accuracy of the measurement.

Context Awareness: Microphones are fre-
quently in use when people use a smartphone 
to make voice calls or send voice messages. A 
smartphone-based crowdsensing system should 
be able to detect the status of the smartphone 
to decide whether a sound level recording task 
should be executed. Moreover, the phone is 
sometimes held in a person’s hand, or placed in 

a pocket or bag, which significantly affects noise 
measurement accuracy. Therefore, a crowdsens-
ing system’s context awareness ability is crucial 
for recognizing the status and placement of smart-
phones. At present, most crowdsensing systems 
rely on smartphones to monitor noise. We look 
forward that smart watches and smart bracelets 
will play important roles in noise mapping since 
they are more “closer” to ambient noise. In addi-
tion to providing health risk alarms, the burden of 
context awareness could also be relieved. 

Energy Consumption: In the era of IoT, the 
public depends heavily on smartphones. These 
devices are charged every night so that they can 
function throughout the day. If noise monitoring 
tasks consume much energy or even deplete the 
smartphone’s charge, people would experience 
increased anxiety. Furthermore, it would cause a 
sharp decline in the interest in participatory noise 
sensing. Thus, energy-efficient task scheduling and 
low-power sensing are necessary.

Privacy Preservation: Personal health data and 
time-location information are sensitive. The par-
ticipants’ health conditions and behaviors can be 
portrayed by this excessive disclosed data. It will 
be a safety hazard to both individuals and society 
as a whole. Therefore, research regarding priva-
cy-preserving data sharing is needed.

Fine-Grained Mapping: Noise estimation of 
uncovered areas through limited crowdsourcing 
data also becomes an urgent task when there are 
not large numbers of participating noise measure-
ments in the dimension of time and space.

relAted systems And mobIle ApplIcAtIons
Many sound crowdsensing systems have been 
proposed in recent years including NoiseSensee, 
GRCSensing, and SONYC [2]. Moreover, a vari-
ety of mobile applications have been developed 
for noise mapping, such as NoiseTube and the 
National Institute for Occupational Safety and 
Health (NIOSH) Sound Level Meter App. A sum-
mary of related work is presented in Fig. 2. The 
determination of design criteria not only helps us 
compare the abilities of different systems but also 
serves as a guideline for engineering development 
and research. The criteria [8] to assess their per-
formance are as follows.

Personal Exposure and Community Exposure: 
The first two criteria mean visualization should 
reflect both current and historical values of sound 
pressure level around individuals and communi-
ties to enable users to understand the noise expo-
sure situation.

FIGURE 2. Summary of crowdsensing systems and mobile applications for noise mapping.
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Risk Assessment: Since environmental noise 
has harmful effects on people’s physiological and 
psychological health, a health risk assessment is 
expected to notify users about illness prevention 
and timely treatment. One example of commer-
cial off-the-shelf product is Apple Watch Series 
5, which can measure ambient sound levels and 
keep track of users’ health.

Experience Capture: The sound levels them-
selves cannot directly represent events that occur, 
such as machine noise or the roar of a crowd. To 
capture the experience, artificial intelligent-based 
noise source recognition is necessary. Other 
approaches to capture events that occur include 
the use of raw audio data, photographs, and vid-
eos.

Continuity and Energy-Awareness: These two 
criteria mean the system needs to balance moni-
toring performance and energy consumption due 
to the limited battery capacity and high energy 
consumption of multimedia sensors used in noise 
mapping applications.

Correctness and Calibration: Measurements 
obtained by smartphones and wearables are not 
as accurate as those obtained by professional 
sound level meters, thus a calibration mechanism 
is essential for correctness.

Context-Awareness and Unobtrusiveness: 
As mentioned in the technical challenges part, 
context awareness helps for the adaptive sound 
measurement. In addition, intelligent operation 
without user interaction is also necessary for 
unobtrusiveness.

Open Source and Interoperability: Final-
ly, openness and interoperability facilitate rapid 
application promotion.

AcoustIc sensor networks
Sound mobile crowdsensing has many advantag-
es. However, a significant limitation is the sens-
ing sparsity in both space and time. Acoustic 
sensor networks (ASNs) are good complements 
to sound crowdsensing in that they provide con-
tinuous noise monitoring. However, different 
system designs critically influence the quality of 
service. Existing ASNs are typically classified into 
three categories: ASNs based on dedicated equip-
ment, ASNs based on improved customized sen-
sor nodes, and ASNs based on low cost sensor 
nodes. A detailed description of the three types of 
networks was presented in [9]. Here, we compare 
them in Table 1 and discuss the main design con-
cerns, which are as follows.

Hardware Cost: The cost of acoustic sensor 
nodes affects network deployment decision. With 
low cost hardware, it is easy to ensure large-scale 
urban coverage. If the hardware is expensive, 
however, a compromise must be made between 
the deployment cost and area coverage.

Accuracy: The choice of acoustic sensors influ-
ences data quality. Dedicated sound level meters 
can provide accurate data collection, but they are 
expensive and large in size. MEMS microphones 
could mitigate this problem but calibration algo-
rithms are required.

Scalability and Reliability: Network archi-
tecture and protocol stack must be carefully 
designed to achieve scalable and reliable ASNs. 
Flexible device discovery and leaving mecha-
nism facilitates the adjustment of the monitoring 

area. Robust medium access control and rout-
ing ensure that the communication performance 
does not significantly fluctuate due to adverse 
external environments.

Capability: Real-time sound sensing and mul-
timedia stream transmission consume a consid-
erable amount of energy. In addition to battery 
power supply, harvesting ambient energy from 
solar power, wind, radio waves, and vibrations is 
ideal. The ability of local processing is important 
to identify sound events and reduce data trans-
port. Equipping devices with GNSS, cameras and 
other kinds of sensors can provide more insightful 
information for noise mapping.

Future reseArch dIrectIons
Despite the numerous academic and industrial 
efforts that have been made regarding noise map-
ping applications, the research of noise mapping 
technology is still in its infancy. In this section, 
we highlight four promising directions for future 
research.

AI-AssIsted noIse predIctIon
Compared with the current model-based noise 
mapping solutions, mobile crowdsensing and 
ASNs are able to record real noise data. Howev-
er, they themselves cannot predict future noise 
levels, which is vital for the advanced evaluation 
of the performance of any noise control measure. 
In the era of IoT, all devices are interconnected. 
Using information regarding sound sources and 
the environment, artificial intelligence could be 
leveraged for noise prediction.

Artificial neural network (ANN) is a good can-
didate performing this task since it can be trained 
to predict sound noise through analyzing exam-
ples under various scenarios. A basic architecture 
for traffic noise prediction is depicted in Fig. 3, 
which consists of an input layer, one or more 
hidden layers, and one output layer. The number 
of different types of vehicles, traffic speeds, road 
widths, building heights, and other factors can 
be considered the input signals. After learning via 
sample observations, such as the real noise mea-
surement at major roads of a city, the network is 
capable of obtaining predicted traffic noise at the 
output layer. A few pilot studies [10] also have 
proven the feasibility of traffic noise prediction 
using artificial neural networks.

There are several challenges when ANN is 
employed to address the noise prediction prob-
lem. First, there is a trade-off between the per-
formance and complexity of an ANN system. 
Prediction accuracy can be improved by increas-
ing the number of input signals. However, a 
more powerful platform is required and the bur-

TABLE 1. Comparison of Acoustic Sensor Networks.

ASNs with dedicated 
equipment

ASNs with customized 
sensor nodes

ASNs with low cost 
sensor nodes

Cost High Medium Low

Accuracy Very high High Low

Scalability Small Medium Large

Reliability Good Good Poor

Capability Very strong Strong Weak
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den of data annotation is increased. Therefore, 
it is critical to decide the most suitable number 
of variables for the input layer. Second, a neural 
network is typically trained by a particular set of 
data, for example, measurements obtained from 
a single city. Due to variations in local conditions 
(e.g., weather conditions and vehicle specifica-
tions), a neural network that performs excellent 
in one region may not work well in other regions, 
and thus result in mistaken predictions. Therefore, 
the generality and applicability of an ANN-based 
noise prediction model needs to be guaranteed. 
Third, the ANN-based approach proposed in these 
pilot studies all focused on traffi  c noises. Howev-
er, traffic noise is not the only source that con-
tributes to environmental noise pollution. Other 
major causes include industrial noise generated 
by factory equipment, construction noise during 
construction activities like road maintenance, and 
social noise that occurs in homes, commercial 
zones, education zones, and other public places. 
However, sophisticated ANN-based approaches 
for these types of noises have yet to be investigat-
ed. Fourth, dynamic fi ne-grained noise prediction 
at a large scale is challenging because sensor data 
processing and calculation require massive com-
puting resources. Therefore, novel learning and 
computing paradigms are needed to improve the 
system’s computing capability and effi  ciency.

Here, we present some potential solutions to 
the challenges listed above. The suitable input 
variables for ANN could be determined through 
sensitivity analysis and an importance ranking to 
illustrate the most important factors that affect 
noise levels in various application scenarios. Gen-
erative adversarial networks (GAN) are expected 
to be applied to noise prediction to enhance the 
generality and robustness of AI expert systems. In 
addition to artifi cial neural networks, the accura-
cy, computational cost, and applicability of other 
machine learning algorithms as they pertain to 
environmental noise prediction in diff erent scenar-
ios must be investigated. Finally, distributed edge 
computing with federated learning is a prom-
ising method by which the massive number of 
resource-constrained IoT devices can be used for 
effi  cient large-scale fi ne-grained noise prediction.

constructIVe InterFerence For multImedIA trAnsmIssIon
Raw sound signals, images, and related videos 
are valuable for context-aware noise mapping. 
Therefore, multimedia information along with 
noise level information should be delivered to 
edge nodes and clouds. However, a negative fact 

is that the to-be-monitored areas might be crowd-
ed with high-speed wireless communications. For 
example, frequent information exchanges among 
vehicles and roadside units will occur as the num-
ber of self-driving cars and the frequency with 
which the Internet of Vehicles is used increases. In 
megacities, the wireless signals in central business 
districts, railway stations, and airports are already 
overcrowded. As a result, the adverse wireless 
communication environment largely aff ects both 
the reliability and latency of ASNs.

Constructive interference-based wireless trans-
mission is a robust technique to protect data 
against radio interference and achieve ultra-low 
delivery latency in multi-hop low-power wireless 
networks. Constructive interference is an inter-
esting phenomenon in low-power wireless net-
works that was first explored in 2008 by Dutta 
et al. Based on this concept, the game-changing 
protocol Glossy was proposed by Ferrari et al. 
in 2011. Essentially, Glossy transforms the devel-
opment of protocol design for wireless sensor 
networks and has attracted significant attention 
from researchers studying embedded wireless sys-
tems and networks. In recent years, most com-
munication protocols and network services [11] 
presented in fl agship academic conferences and 
international scientific competitions are built on 
top of constructive interference.

The basic principle of constructive interference 
is that one receiver can successfully decode iden-
tical packets from multiple transmissions if the 
radio signals from the senders are tightly over-
lapped in both time and frequency domains. How-
ever, it is not easy to implement such a technique 
to existing low-power sensing platforms because 
tight synchronization is challenging and the tim-
ing requirements of constructive interference in 
different platforms largely depend on modula-
tion techniques and data rates. In addition, the 
packet size, number of concurrent senders and 
transmission power also affect its dependability. 
Furthermore, most existing implementations are 
designed on TelosB mote, which was introduced 
to the research community as a test platform over 
10 years ago.

At present, increasing numbers of hard-
ware platforms with enhanced processing and 
communication capabilities are introduced to 
emerging smart applications. The public test-
beds D-Cube and FIT IoT-Lab already support 
powerful hardware platforms such as the Nordic 
nRF52 series and Zolertia Firefl y. Now is the time 
to study the feasibility of realizing constructive 
interference on these platforms under different 
physical layer technologies. When constructive 
interference meets noise mapping, a signifi cant 
issue is the efficient transmission of multimedia 
traffic because a larger packet size would lead 
to a higher packet corruption rate. This topic has 
been rarely investigated so far. It now provides 
new opportunities for existing research on mul-
timedia transmission to be integrated into con-
structive interference toward further improving 
the reliability, energy effi  ciency, and bit fl ux for 
noise mapping. Possible methods include com-
bining inter-frame and intra-frame coding or 
compressive sensing with constructive interfer-
ence to ensure better synchronization by reduc-
ing frame length.

FIGURE 3. Artifi cial neural network for traffi  c noise prediction.
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sImultAneous noIse sensIng And energy hArVestIng

Energy-efficient noise monitoring is challenging 
due to the following reasons. First, the general 
ambient noise is of concern that requires fre-
quent sampling. Second, abnormal events such 
as road work and traffic jams greatly contribute 
to noise pollution, and they are of more interest 
to researchers and offi  cial departments. However, 
the exact times at which these abnormal events 
occur are uncertain. Traditional periodic sensing 
approaches can only capture part of these events 
and might lead to the loss of critical information. 
Third, the limited energy seals of sensor nodes 
and smart devices cannot continuously perform 
noise sensing tasks. Fourth, the audio sensors and 
cameras used in noise mapping applications are 
power-hungry, and result in the rapid acceleration 
of energy consumption.

Currently, many applications need pow-
er-hungry sensors. To extend the lives of these 
applications, sensorless sensing technologies are 
proposed. The basic idea is to leverage radio as 
sensor. Examples of this include human activity 
recognition and in-home sleep monitoring using 
radio signals. Here, we envision a new form of 
sensorless sensing, namely power supply as sen-
sor. Sound energy harvesting could become not 
only a promising ambient energy source but also 
passive sensors for noise mapping [12, 13].

We illustrate the novel simultaneous sensing 
and energy harvesting system in Fig. 4. The inter-
ested noise signals from road traffi  c, social activ-
ities, industrial production, and construction are 
fi rst captured through piezoelectric material, elec-
tromagnetic induction, and the triboelectric eff ect. 
Next, converter circuits are used to convert ambi-
ent sound energy into electrical energy, which is 
then stored in a supercapacitor or rechargeable 
battery. The voltage monitor observes the harvest-
ed energy level at a predefi ned rate. Furthermore, 
these measured values are used as the inputs of 
the sound-voltage model, which is capable of cal-
culating the corresponding sound pressure level. 
Thus, the system is able to passively record envi-
ronmental noise levels without any audio sensors. 
The harvested sound energy could be periodically 
forwarded to the power supply unit. The amount 
of electrical energy is dependent on sound energy 
density and conversion effi  ciency, which means a 
self-sustained sensorless noise monitoring system 

without external power supply would be possible. 
On the other side, the system could be equipped 
with an additional loudness sensor and camera. 
The task scheduler could thus decide if the fi ne-
grained and context-aware sensing should be per-
formed according to the noise thresholds.

InAudIble sound securIty And monItorIng
Millions of smart objects are equipped with 
a voice controllable system as human-machine 
interface in the IoT. Through voice commands, 
these smart objects (e.g., smartphones, robots or 
cars) are able to execute corresponding actions 
to initiate phones, clean rooms, and drive the car 
automatically. By enabling hands-free human-ma-
chine interaction, voice assistants help people do 
many things with ease, especially for children, the 
elderly, and disabled individuals.

However, it is worth noticing that hidden 
voice commands can be generated by malicious 
operators in the following two ways. First, sound 
signals between 20 Hz and 20 kHz are audible 
to both humans and microphones while ultra-
sound signals are inaudible to humans, yet can 
be recorded by microphones. That means that 
malicious operators can easily and undetectably 
use software defined radios or even modified 
commercial smartphones to send inaudible voice 
commands via ultrasound channels without peo-
ple being aware of the attacks. Second, malicious 
audible voice commands can be disguised as 
white noise and embedded into public broadcast 
programs and videos uploaded to online social 
media platforms. When people listen to or watch 
these multimedia resources, the malicious voice 
commands are recognized by voice controllable 
systems during the speech recognition stage while 
people do not perceive the command delivery. 
Such hidden voice command attacks could lead 
to serious consequences, such as traffi  c accidents, 
indiscriminate transactions, and wrong opera-
tion. They could significantly affect the progress 
of smart home, autonomous driving, agricultural 
robotics, and other applications. Therefore, inau-
dible sound attacks and defense are critical issues 
that must be addressed. 

Most of the existing security solutions that 
serve to mitigate this issue focus on the study of 
detection mechanisms on the receiver side to dif-
ferentiate whether voice commands come from 
legitimate users or malicious operators. Popular 

FIGURE 4. Architecture of simultaneous environmental noise monitoring and energy harvesting in noise map-
ping application. 
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detection methods include the analysis of indeli-
ble non-linear voice trace [14], pop noise location 
and classification [15]. 

Here, we present an alternative method: over-
the-air monitoring of inaudible sound attacks. The 
ASNs and mobile devices used for audible envi-
ronmental noise mapping could simultaneously 
monitor inaudible sound. For example, the sen-
sor node could monitor the sound signal at one’s 
home and send the detected voice commands 
to a screen for visualization to notify the home-
owners of this situation and thus enable them to 
take action. In driving scenarios, a smartphone 
can monitor hidden voice commands in real time 
to ensure the safety of drivers and passengers.

Unfortunately, the current noise mapping 
approaches focus primarily on the calculation of 
sound pressure level. In the future, the application 
of enhanced noise mapping to over-the-air mon-
itoring of inaudible sound attacks is expected to 
be investigated, in which broadband sound signal 
capture at different frequencies and speech rec-
ognition are essential.

conclusIon
Many academic research and industrial efforts 
have contributed to IoT-based noise mapping. 
However, comprehensive literature review and 
systematic analysis on this area is still lacking. 
This article closes the gap by presenting in-depth 
descriptions of the latest advances in noise map-
ping technologies. Specifically, we discussed the 
technical challenges of sound mobile crowdsens-
ing and summarized the criteria for the design of 
crowdsensing systems and mobile applications. In 
addition, we compared the cost, accuracy, scal-
ability, reliability, and capability of the three types 
of acoustic sensor networks. Moreover, we pre-
sented elaborate discussions of the four identified 
research directions from the perspectives of moti-
vations, technical issues, and potential solutions. 
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