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E
xposure to environmental noise 
has harmful effects on human 
health for both physiologi-
cal and mental aspects, such 
as annoyance, sleep disor-
ders, cardiovascular disease, 

or even permanent hearing impairment. 
This problem is further exacerbated in 

industrial environments, where millions 
of workers are exposed to occupational 
noise. Therefore, noise mapping is es-
sential and the first step to solving noise-
pollution problem. 

However, both sound-level meter (SLM)-
based measurement and computational 
model-based simulation, the two main 
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noise-mapping approaches 
at present, have their own 
limitations. To promote 
the development of noise-
mapping techniques, this 
article presents the frame-
work of the collabora-
tive Industrial Internet of 
Things (IIoT) for next-
generation noise mapping, 
especially in industrial 
parks. Moreover, other 
potential applications be-
yond noise mapping for 
smart factories are listed. 
Finally, fundamental is-
sues and suggestions for 
future research are dis-
cussed in detail.

The Challenges of 
Noise Pollution
Noise pollution, behind 
air pollution, has risen to 
the second-most common 
environmental cause of 
public health problems, 
especially in industrial 
environments where work-
ers are exposed to hazard-
ous occupational noise in 
their workplaces. Long-
term exposure to noise, 
as has been reported 
[1], has negative impacts 
on huma n physiologi -
cal, mental, and physi -
cal health. Like humans, 
animals and plants are 
also negatively affected 
by noise pollution [2]. For 
example, cows and chick-
ens re a red in  a  noisy 
environment undergo a 
sharp decline in the pro-
duction of milk and eggs, 
respectively. Also, since 
noise changes the behav-
ior of wild animals, the 
dispersal of plant seeds 
is hampered [3].

Figure 1 illustrates the 
types of noise pollution, 
which, based on measure-
ment and sound sources, 
can be classified into 
three broad categories:

■ Occupational noise: This deals with 
the various noises employees are ex-
posed to during their working time. 
Occupational noise is generated by 
industrial machinery in power gen-
eration, product fabrication, process-
ing, and assembly sections, which 
significantly affects industrial workers.

■  Environmental noise: This relates to 
unwanted sound that occurs from 
either outside or indoors [4]. The 
major sources of environmental 
noise include transportation activi-
ties, construction sites, and public 
social activities. Transportation is 
the leading source of noise pollution 
in urban areas, as road-traffic density 
has gradually increased. Construc-
tion activities (e.g., building construc-
tion, road maintenance, and land 
excavation) affect not only workers 
but also bystanders. Moreover, pub-
lic announcement systems and loud 
talking, including entertainment, all 
contribute to environmental noise in 
a public place. A taxonomy for noise 
pollution in urban areas and the Ur-
banSound data set have been present-
ed in [5], which are helpful for envi-
ronmental noise mapping. Although 
the sound-pressure levels of envi-
ronmental noise are not very high, 
the noise is often intensely annoying 
and extremely affects our daily lives. 

■ Product noise: Finally, acoustic noise 
is produced through heavy machin-
ery, electric vehicles [6]–[8], data 
centers, and other appliances when 
they are in operation. Therefore, it is 
necessary to measure product noise 
to reduce its level to meet standards 
and regulatory requirements.

In 2002, a strategic noise-mapping ac-
tion was initially established through the 
Environmental Noise Directive 2002/49/
EC [9] when the European Union (EU) 
realized noise pollution would become a 
threat to the public health-care systems 
and even the economy of Europe [10]. All 
member states are required to publish 
their noise maps every five years, along 
with noise-management action plans. 
The first three rounds of the strategic 
noise-mapping action were completed 
in 2007, 2012, and 2017, respectively, and 
it is currently in the fourth round. The 
motivation for noise mapping lies in the 
following three aspects:
■ Due to the substantial negative im-

pacts on human health, the ecolog-
ical environment, and the national 
economy, noise pollution becomes 
a major problem for many developed 
and developing countries.

■ It is challenging to solve the noise-
pollution problem since environ-
mental noise is invisible, dynamic, 
and generated by different kinds 
of activities.

■ With many tens of millions of people 
moving to urban areas, their activi-
ties cause a sharp increase in envi-
ronmental noise. As a result, it be-
comes more challenging to ensure a 
sustainable environment for a smart 
city due to the trend of metropoli-
tan expansion. 

Overview

Today’s Noise-Mapping Approaches
The most common instruments for 
noise monitoring are professional 
SLMs that are capable of measuring 
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FIGURE 1 – The types of noise pollution based on the purposes of measurement and sound sources.
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sound-pressure levels directly and per-
forming frequency analysis. The SLM-
based measurement is suitable for small-
scale product-noise analysis. However, 
the approach is labor intensive, time 
consuming, and cost prohibitive when it 
comes to large-scale measuring for occu-
pational and environmental noise.

An alternative is model-based noise 
computation, which has mainly been 
used to generate noise maps over the 
past years. This approach not only 
computes the sound-pressure level 
but also evaluates the performance 

of noise-reduction actions in advance. 
Differing from real-world noise mea-
surement, the principle of computa-
tional model-based noise mapping 
is based on exploiting the acoustic 
emission behavior of noise sources and 
sound propagation characteristics to 
assess noise pollution. 

Figure 2 illustrates the model-based 
noise-computation basic work pro-
cess, which involves input, process-
ing, and map generation. In the first 
step, it is necessary to load data regard-
ing the sound source and environment 

characteristics from geographical 
information systems and third-party 
databases. The sound-source character-
istics are used for estimating noise 
emission from industrial produc-
tion, transportation activities, and so 
forth. Also, the propagation attenuation 
of noise at the receptor is calculated 
through environmental characteristics.

After finishing data input, noise ex
posure is estimated based on compu-
tational models in the second step. A 
comprehensive review of computational 
models for traffic noise was conducted 
in [12] and [13], where the authors gave 
a detailed introduction of popular traffic 
noise models and presented a critical 
analysis in terms of different technical 
attributes, such as sound propagation, 
source emissions, and geometrical di-
vergence. Based on this valuable work, 

• Location
• Traffic Type
• Speed
• Heavy

• Track Base
• Equipment Type
• Directivity
• Flow

Source Characteristics

Environment Characteristics

• Topography
• Building
• Ground Cover

• Temperature
• Air Humidity
• Wind Speed

Input Processing Map Generation

Models

ISO 9613-2

NMPB-Routes

ASJ RTN

CNOSSOS-EU

FHWA TNM

Affected People

400

600

FIGURE 2 – The basic work process of computational model-based noise mapping [11]. ASJ-RTN: Acoustical Society of Japan Road Traffic Noise 
Model; FHWA TNM: Federal Highway Administration Traffic Noise Model; NMPB-Routes: Nouvelle Méthode de Prévision du Bruit des Routes. 

TABLE 1 – POPULAR NOISE COMPUTATIONAL MODELS AND SUPPORTING APPLICATION SCENARIOS.

 APPLICATION SCENARIOS

MODEL YEAR PUBLISHER ROAD TRAFFIC RAILWAY AIRCRAFT INDUSTRIAL SITE WIND TURBINE

ISO 9613-2 1996 ISO ü

HARMONOISE/IMAGINE 2005 EU ü ü ü ü

Nord2000 2006 Nordic countries ü ü ü

NMPB-Routes-2008 2008 France ü ü ü

ASJ-RTN model 2013 Japan ü

CNOSSOS-EU 2015 EU ü ü ü ü

FHWA TNM 2017 United States ü

ASJ-RTN: Acoustical Society of Japan Road Traffic Noise Model; FHWA TNM: Federal Highway Administration Traffic Noise Model; ISO: International Organization 
for Standardization; NMPB-Routes-2008: Nouvelle Méthode de Prévision du Bruit des Routes.

It is challenging to solve the noise-pollution problem 
since environmental noise is invisible, dynamic, and 
generated by different kinds of activities.
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we present a discussion from the point 
of view of the application scenarios they 
can support.

Table 1 shows the popular noise com-
putational models and their supporting 
application scenarios. The International 
Organization for Standardization (ISO) 
published the ISO 9613-2 model, which 
presents an empirical method to cal-
culate sound propagation attenuation 
in the outdoor environment. Although 
the approximate results are not ac-
curate enough, the ISO 9613-2 model 
is simple and easy to program using 
software tools. The model was also 
recommended in Directive 2002/49/EC 
for assessing industrial noise for first-
round strategic noise mapping. 

Since then, many noise models have 
been developed. For example, the 
HARMONOISE project [14] was sup-
ported by the EU framework program 
to develop reliable methods to assess 
environmental noise from road traffic 
and railways. The IMAGINE project ex-
tended its use to industrial scenarios 
and aircraft. The Nord2000 model was 
applied in Nordic countries to estimate 
road and railway noise. This method is 
also used for wind farm noise assess-
ment in recent years. Other classical 
models include the Nouvelle Méthode 
de Prévision du Bruit des Routes (NMPB-
Routes-2008) [15], Acoustical Society 
of Japan Road Traffic Noise Model [16], 
and Federal Highway Administration 
Traffic Noise Model.

However, diversification causes in-
consistent noise maps. To address this 
problem, the European Commission 
has been offering to develop a com-
mon approach for noise assessment 
since 2009. As a result, the Common 
Noise Assessment Methods in Europe 
(CNOSSOS-EU) model was published 
in 2015, and then Directive 2015/996/
EC specified that all members should 
apply the CNOSSOS-EU model to gen-
erate strategic noise maps beginning 
in 2019.

In the third step, noise maps are 
generated in graphical and numerical 
formats. Many commercial software 
tools, such as Predictor-LimA, Cad-
naA, SoundPLAN [11], and noise3D, 
can carry out these complicated tasks 
automatically. Apart from commercial 

software, researchers have been pro-
posing open source tools for academia 
to study environmental noise [17], 
[18]. NoiseModelling [19] is open 
source software that calculates traf-
fic noise using the NMPB-Route-2008 
method. An industrial sound-source 
application is also available in the 
NoiseModelling tool. Also, the ope-
Noise is another free tool for road 
traffic noise assessment.

Limitations
Professional SLMs can accurately 
measure parameters related to occu-
pational, environmental, and product 
noise. However, area coverage is the 
main limitation because it is impos-
sible to deploy these devices in all 
places at all times.

Moreover, computational model-
based noise mapping also faces sever-
al limitations, which are summarized 
as follows:

■■ Simulation results: Model-based 
noise computation is the main meth-
od for generating large-scale noise 
maps at present. It greatly reduces 
the burden of manual noise collec-
tion, where appointed workers pe-
riodically go to investigated sites 
and collect environmental noise 
through the professional SLMs. 
However, the results generated 
by the model-based computation 
method are estimated values. In 
many cases, the accuracy is not 
good enough because the com-
plex input parameters cannot be 
fully obtained [12].

■■ Limited scenarios: The sources 
of noise pollution are diverse: it 
comes from moving traffic, traffic 
jams, industry production, construc-
tion work, neighborhood trouble, 
and other activities. However, ex-
isting acoustic models can cover 
only a few scenarios [20], which 
means that many types of outdoor 
and indoor sound noise cannot be 

added for overall noise prediction 
in an area.

■■ Static mapping: The update period 
of simulated noise maps is very 
long. For example, the review peri-
od for strategic noise maps allowed 
by the Environmental Noise Direc-
tive is five years, which makes it 
unable to describe the time-varying 
sound noise. Although this prob-
lem could be mitigated by quickly 
updating input parameters, the 
predefined scenarios are unable to 
cover unpredictable sound events 
well. More importantly, static noise 
maps do not help the public much 
since the figures present only year-
ly global noise exposure rather than 
the current ambient noise situation 
and potential health problems.

Expectations for Next-Generation 
Noise Mapping
Next-generation noise mapping is ex-
pected to have the following new ca-
pabilities:

■■ Accurate real-time measurement: The 
levels of noise exposure can be truly 
reflected through accurate real-time 
measurement so that noise-pollution 
assessment in all scenarios is ap-
plicable. It does not need complex 
input parameters regarding traffic 
networks, industry, geographical in-
formation, and propagation factors.

■■ Fine-grained classification: One mea-
sured result is a mixed sound-pressure 
level produced by all kinds of noise 
sources. Therefore, it is essential to 
classify the sound sources and calcu-
late their corresponding sound-pres-
sure levels to provide precise noise 
maps and respond with appropriate 
actions.

■■ Dynamic mapping: Noise variation 
at different times of a day, week, 
and year can be well demonstrated 
through dynamic noise mapping. 
It also can present accidental and 
short-term sound events.

Professional SLMs can accurately measure  
parameters related to occupational, environmental, 
and product noise.
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■■ Human-centric visualization: More-
over, human-centric visualization 
of noise maps is more practical. For 
example, a noise map on a smart-
phone shows the real-time noise 
levels at hot spots with potential 
health problems, and then citizens 
can decide whether to go or not. 
Also, such noise maps are able to 
provide citizens with quiet and safe 
routes to their destinations.

■■ Data-driven mitigation: Finally, based 
on the precise noise-pollution infor-
mation provided by noise mapping, 
industrial managers or officials 
are able to gain a deep understand-
ing of noise in terms of sources, 
level, and distribution, which is ex-
tremely important for effective 
noise reduction.

The IIoT for Next-Generation 
Noise Mapping in Industrial 
Parks
Industrial parks (such as Jubail Indus-
trial City, Alberta’s Industrial Heart-
land, Tahoe Reno Industrial Cen-
ter, and Suzhou Industrial Park) are 
the sections in a country zoned for 

industrial development. An example 
is shown in Figure 3. This type of zon-
ing accelerates business growth and 
promotes modern industrial devel-
opment by concentrating dedicated 
infrastructures, bringing companies 
together, providing policy incentives, 
and so on. 

However, an industrial park is also 
a complex scenario, where manufac-
turing, production, transportation, and 
storage are often combined together. 
Thus, all three categories of noise pol-
lution mentioned earlier might occur in 
an industrial park. The noise might be 
from industrial sources, inside an indus-
trial facility and server room, or from 
the transportation of goods. The pri-
mary goal of this section is to propose 
a collaborative method to implement 
next-generation noise mapping in indus-
trial parks. In addition, the proposed 
method could be seamlessly applied to 
noise mapping in urban areas.

The IIoT [21], [22] is a machine-oriented, 
service-centric ecosystem that involves 
identification, sensing, communication, 
real-time processing, data analysis, 
and decision making for the industrial 

sector. Thus, all of the industrial ob-
jects (e.g., sensors, actuators, instru-
ments, robots, and control systems) 
in this paradigm are interconnect-
ed so that they can collaborate for 
knowledge-based factory automation 
and intelligent services in indus-
trial applications. 

The IIoT has been successfully ap-
plied in smart manufacturing, smart 
supply chain, and smart energy man-
agement, to name a few. Now, it is 
time to direct the IIoT toward a peo-
ple-centric ecosystem. Noise mapping 
is one of the key applications to pro-
tect people against noise pollution,  
especially for industrial workers. 
Figure 4 presents the proposed frame-
work of IIoT-based noise mapping, 
which improves current noise-map
ping approaches through the fol-
lowing aspects.

Collaborative Sensing Capability
The real-time sound-pressure levels 
can be measured collaboratively us-
ing wireless acoustic sensor networks 
(WASNs) [23], mobile crowdsensing 
(MCS), robots, and unmanned aerial 
vehicles (UAVs). Wireless sensor net-
works (WSNs) have been widely used in 
forest fire detection, structural health 
monitoring, and industrial emergency 
alarms for many years [24]. Noise map-
ping is also one promising applica-
tion for WSNs because they are able to 
capture sound noise continuously. As 
the deployment cost is high, the WASN 
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FIGURE 3 – (a) Industrial parks and (b) the related noise pollution generated during manufacturing, production, transportation, and storage. 

Existing acoustic models can cover only a few 
scenarios, which means that many types of outdoor 
and indoor sound noise cannot be added for overall 
noise prediction in an area.
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could be placed only in key areas for 
fixed, long-term sound-data acquisition.

People currently spend much of 
their time every day on social networks 
to share pictures and videos as well as 
leave comments using mobile devices, 
which are also promising for large-
scale sound MCS [25], [26]. The micro-
phones in mobile devices can capture 
the sound-pressure level in the sur-
roundings, and global navigation satel-
lite systems are able to provide location 
information. Together with acoustic-
source localization and tracking algo-
rithms [27], the position of noise sourc-
es and their moving trajectories can be 
obtained. The computational model-
based noise mapping can present only 
the sound-pressure levels on the maps. 
Instead, sound mobile crowdsensing 
can improve map information by up-
loading audios, videos, and comments. 
More importantly, the real-time health 
effects on humans or animals are vis-
ible with the help of smartwatches, 
smart bracelets, and biosensors.

Recent advances in sound MCS 
and WASNs were presented in [28], 
where the authors gave a short review 
of related works and focused on the 
system design issues. In contrast, this 
article hopes to give the whole picture 
of next-generation noise mapping with 
emerging Industry 4.0 technologies in 
terms of collaborative sensing, com-
puting, and intelligence.

Furthermore, robots [29] and au-
tonomous guided vehicles can also 
contribute to noise measurement in fac-
tories or on roads by equipping them 
with loudness sensors. The 3D ambient 
sound-noise visualization is fascinating, 
and UAVs [30] are very helpful to mea-
sure sound-pressure levels vertically. 
In this scenario, denoising schemes 

and path planning are two interesting 
topics to be explored.

In a nutshell, the collaborative 
sensing capability fundamentally 
addresses the limitations of simula-
tion results and limited scenarios 
in the computational model-based 
noise mapping with minimum cost. In 
the future, the computational model-
based noise-mapping approaches and 
multisensor-based noise measure-
ment can complement each other. 
For example, it is extremely important 
to estimate the noise level before 
construction of an industrial site or 
evaluate the performance of noise-
control measures in advance, which 
can be achieved by the simulation-
based approaches. 

MCS UAVRobotsWASN

Sensor
Computing

Fog
Computing

Cloud
Computing

Collaborative
Sensing

Collaborative
Computing

Collaborative
Intelligence

Application

Noise Mapping 

Noise-Level Prediction

Acoustic-Source Recognition

Elementary

Space Management

Machine Health Monitoring

Intruder Alarm Energy Map

Advanced

C
yb

er
se

cu
rit

y 
an

d 
P

riv
ac

y 
P

ro
te

ct
io

n

Next-Generation
Noise-Mapping

Properties

Real Noise
Measurement

Fine-Grained
Classification

Dynamic
Noise Mapping

Human-Centric
Visualization

Data-Driven
Mitigation

AI Big Data

Machine

Things

Data

Human

FIGURE 4 – The proposed framework of the collaborative IIoT for next-generation noise mapping in industrial parks. AI: artificial intelligence; UAV: 
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An industrial park is also a complex scenario, where 
manufacturing, production, transportation, and 
storage are often combined together.
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On the other hand, real-time mea-
surement results from multisensor-based 
approaches can be used to calibrate 
computational models. However, it 
is worth noting that, although the 
multisensor-based noise-mapping ap-
proaches are capable of providing real 
noise measurement, they themselves 
cannot present noise levels in the future 
or noise sources. To achieve noise-level 
prediction and acoustic-source recogni-
tion, artificial intelligence (AI) models 
are necessary.

Collaborative Computing Capability
All calculations for sound emission 
power and propagation attenuation take 
place at central servers when using the 
computational model-based method. 
The requirement of dynamic noise map-
ping at a large scale undoubtedly ag-
gravates the burden of central servers. 
The IIoT-based noise-mapping method 
alleviates this problem by forming a hi-
erarchical, cross-layer, and distributed 
computing network [31], [32].

Collaborative computing capability 
could be utilized in the following man-
ner. Sensing devices (such as sensor 
nodes, smartphones, smartwatch-
es,  and UAVs) initially calculate the 
equivalent continuous sound level at 
every 30 s and label every fragment as 
important noise events or basic back-
ground noise when capturing raw en-
vironmental sound. These data are 
transmitted with different compres-
sion rates to macrocell base stations 
or gateways through 5G, Zigbee, Nar-
rowband IoT, long-range wide area 
network, and SigFox.

Then, fog computing performs 
fine-grained recognition to further 
classify the important noise events 
into industrial machinery, motorized 
transport, construction, amplif ied 
music, or human voice. Finally, this 
environmental noise information is 
delivered to the cloud service plat-
form for noise display and reporting. 

Furthermore, big data analytics on 
sound noise can help to analyze noise 
trends and even social problems. In 
summary, the hierarchical collabora-
tive sensor–edge/fog–cloud comput-
ing architecture in the IIoT enables 
real-time fine-grained noise mapping 
at a large scale.

Collaborative Intelligence Capability
Noise maps in the past only presented 
average noise-pressure levels. Next-
generation noise mapping with the 
IIoT is able to provide much more valu-
able information about the context of 
sound noise regarding the classifica-
tion of noise generators, correspond-
ing noise levels, personal health risks, 
and so on. 

Second, traditional noise maps 
are published online by officials, but 
they are rarely accessible for people. 
The interaction between people and 
real-time noise maps becomes pos-
sible when using IIoT-based noise map-
ping. The noise information recorded 
through smart objects could be up-
loaded to the Internet and then dis-
played on mobile applications, such 
as Google and Baidu Maps. Social net-
works, such as Facebook, Twitter, We-
Chat, and Weibo, could further share 
this information. Real-time feedback 
helps the public to gain a deep under-
standing of surrounding noise pollu-
tion and promotes public awareness to 
reduce noise actively. 

Third, new insights about noise 
pollution and its adverse effects will 
be discovered through feeding the un-
precedented amount of sound-noise 
data into AI systems. Thus, data-driv-
en noise-management actions will be 
more efficient than ever.

Traditionally, the IoT focuses on 
physical objects’ interconnections and 
is characterized by the ability to trans-
fer data over a network without requir-
ing human-to-human or human-to-ma-
chine interaction. Today, the concept 

of the Internet of Everything (IoE) [33] 
is proposed by Cisco and has attracted 
significant attention from industrial 
and academic communities. The IoE 
is considered as a superset of the pas-
sive IoT, in which machine-to-machine, 
human-to-human, human-to-machine, 
and data-to-meaning are all involved 
to create unprecedented opportuni-
ties and values for all communities. 
In noise-mapping applications, the col-
laborative intelligence among sensing 
devices, computing units, and humans 
allows the blueprint of people-centric 
visualization and data-driven noise 
mitigation to become realities.

Other Potential Applications  
for Smart Factories
In addition to presenting the distribu-
tion of sound-pressure levels in spe-
cific areas of interest, noise mapping 
is also helpful for smart factories. Four 
potential applications include:

■■ Space planning and management: 
Sound-pressure levels in a plant can 
be reflected in noise maps, which 
provide a guide for a line manager to 
control noise pollution and manage 
the factory area, such as workshop-
layout planning.

■■ Machine health monitoring: By ana-
lyzing measured acoustic signals 
emitting from in situ machines, it 
is possible to detect early faults 
and diagnose machine health con-
ditions [34], which is helpful to 
facilitate repair-related mainte-
nance decision making as well as 
avoid unplanned downtime and 
safety issues.

■■ Intruder alarm in industrial plants: 
A burglar alarm system is of great 
significance for protecting fac-
tory assets from damage or theft. 
Noise measurement could be also 
used for smart/physical intrusion 
alert. Smart objects equipped with 
loudness sensors are able to detect 
after-work abnormal activities. By 
comparing predicted sound levels 
with the current state, they can re-
port alarm messages to security 
staff immediately if unusual sounds 
are detected.

■■ Ambient sound-energy map: Al-
though noise is a kind of pollution, 

Noise mapping is one of the key applications to 
protect people against noise pollution, especially for 
industrial workers.
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it is also an ambient energy [35], 
which can be utilized to power 
smart devices. Thus, noise maps 
can be considered as sound-energy 
maps. With this information, sound-
powered energy-harvesting sensor 
nodes could be designed and de-
ployed at certain places to perform 
either sound-pressure-level mea-
surement or for other purposes.

Future Research Opportunities
The previous section explored collab-
orative IIoT for next-generation noise 
mapping and its potential applications. 
In this section, some fundamental 
issues and our suggestions for future 
research are discussed. For simplicity, 
the take-home messages are summa-
rized in Figures 5 and 6. 
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FIGURE 5 – Some fundamental issues in the collaborative IIoT for next-generation noise 
mapping.
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Model-based noise computation is the main method 
for generating large-scale noise maps at present.
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Fundamental Issues

Energy-Efficient Sensing
Sound-noise monitoring has the fea-
tures of both event- and time-driven 
applications. Noise is emitted by a 
series of events, which means sensor 
nodes should try their best to capture 
every noise event for fine-grained 
monitoring.

However, it is challenging to per-
form such power-hungry sensing 
tasks, as the battery capacity is lim-
ited. Although ambient energy har-
vesting from external sources (e.g., 
solar power, wind, and radio signals) is 
a promising technique to provide sus-
tainable energy for WASNs, the ambi-
ent energy is often dynamic and insuf-
ficient. For example, in the referenced 
experiment setup [36], the solar-pow-
ered acoustic sensor nodes could not 
support continuous sensing tasks 
even during the summertime in the 
United Kingdom. Thus, it is necessary 
to carefully design the dimensions of 
photovoltaic panels [37], wind tur-
bines, antennas, and other energy 
harvesters according to application-
specific requirements, ambient energy 
in the selected area, and power con-
sumption of the noise-sensing system.

On the other hand, background 
noise is relatively stable over a certain 
period in many scenarios [38]. For 
example, in working environments, 
it is quiet during most of the time on 
weekends and holidays except the 
short noise events related to cleaning 
or social activities. In a single working 
day, more noise is created from 10 a.m. 
to 4 p.m., whereas it is quieter for the 
rest of the time. This means that it is 
possible to save a lot of energy by in-
creasing the sampling interval without 
sacrificing much of the performance.

Noise and Positioning Data Quality
Static sensors are always placed in a 
certain location as planned, and it 

is easy to track their geographical 
locations and operating statuses. 
However, objects in industrial envi-
ronments typically are of high mobil-
ity and dynamic characteristics. As 
a result, it is often hard to identify 
and predict the trajectories of mo-
bile sensing nodes (such as robots 
and workers who are equipped with 
wearable sensors). They may move 
everywhere during their work, but 
not all of the data they contribute is 
of interest for a specific application.

In addition, noise-measurement 
accuracy is a huge concern when 
humans are involved in fulfilling the 
noise-sensing tasks. Participants may 
contribute low-quality data due to 
inappropriate operations or mali -
cious purposes. Any unexpected vi-
bration or friction will lead to a fluc-
tuation in the sound-pressure level, 
especially when participants collect 
data with smartphones or wearable 
devices in their pockets or bags. A 
possible solution to improve data 
quality in crowdsensing [25] is partic-
ipant activity recognition. Identifying 
participants’ activities not only helps 
with inferring their intentions but 
also facilitates user data assessment. 
However, data protection and privacy 
must be taken into consideration in 
the future.

Finally, there might be some blind 
geographic areas in complex indus-
trial zones where accurate location 
information is not available due to sat-
ellite signal attenuation and multipath 
effects. In this case, moving-trace pre-
diction and positioning calibration 
are essential.

Flexible Wireless Multimedia 
Transmission
Energy-efficient sensing and noise/
positioning data quality are the two 
fundamental issues at the perception 
layer. When it comes to the network 
layer, flexible wireless transmission 

related to noise mapping is critical 
since the wireless environments in 
industrial plants and surroundings in 
industrial parks are often harsh [39]. A 
large number of wireless devices have 
been deployed for mission-critical IIoT 
applications. They usually operate at the  
2.4-GHz unlicensed band. For example, 
the leading wireless industrial stan
dards (WirelessHART and International 
Society of Automation 100.11a) are all 
based on the IEEE 802.15.4 physical 
and media access control layer.

As industrial process automation 
and control are mission-critical appli-
cations, they must be dependable [40], 
[41] and have a higher priority. There-
fore, the wireless multimedia trans-
mission for noise mapping should not 
interfere with mission-critical indus-
trial applications. On the other hand, 
it has to save itself from harsh radio-
frequency interference.

Data-Driven Sound Analytics
After real-time noise mapping, the ap-
plication of noise-level prediction, 
acoustic-source recognition, fault di-
agnosis, and intruder alarm can be 
achieved by data-driven sound ana-
lytics. The basic process is demon-
strated in Figure 7. First, ubiquitous 
noise sensing in industrial parks is 
accomplished through collaboration 
among workers, autonomous guided 
vehicles, robotics, and UAVs. Then, 
data preprocessing is needed in the 
second stage to fulfill data clean-
ing, integration, data reduction, and 
transformation. After that, salient 
feature representations are extracted 
at the sound-analysis module through 
Fourier transform, wavelet analysis, 
and empirical mode decomposition. 
Finally, decision making is performed 
for certain applications. Currently, 
cutting-edge AI technologies, such 
as federated learning and multiagent 
systems, are helpful to provide dis-
tributed machine learning training 
[42], data analysis [43], knowledge dis-
covery, and decision making.

Although data-driven sound analyt-
ics is promising, many issues need to 
be addressed. First, sound-data sourc-
es are greatly dynamic and heteroge-
neous. The collaborative noise sensing 

The interaction between people and real-time noise 
maps becomes possible when using IIoT-based  
noise mapping.
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causes heterogeneity in the data struc-
ture, communication, data storage, and 
semantic interpretation. As a result, 
the format and semantics of the data 
must be unified before analysis.

Second, the accuracy of data -
driven models is highly based on 
the type, quality, and volume of mea-
sured data as well as mathematical 
models of the applied analytic tools. 
Therefore, it is critical to appropriate-
ly design the data-collection scheme 
and data-analysis methodology so 
that valuable knowledge can be ex-
tracted from raw data through suit-
able data-mining solutions. 

Finally, the application of advanced 
machine learning techniques, such as 
artificial neural networks and deep 
learning methods, typically involves 
the optimization of several hyperpa-
rameters in the decision model. Con-
sidering the dynamic characteristics 
of industrial parks, suitable semisu-
pervised/unsupervised learning meth-
ods and optimization techniques are 
needed to improve the performance of 
such AI systems.

Human–Machine Intelligence
Human–machine intelligence [44] is a 
new form of intelligence, which is dif-
ferent from AI in the traditional sense. 
It is based on the cooperation of hu-
man and machine intelligence, and it 
fully utilizes the advantages of human 
emotional decision making and learn-
ing capabilities, along with the ad-
vantages of machine superstorage 
and computing capabilities.

With fully utilized human–machine 
collaboration and intelligence, large-
scale noise sensing and decision mak-
ing are made easier. However, optimiz-
ing task allocation for human–machine 
collaborative intelligence [45] is an 
NP-hard problem. On the one hand, it 
is critical to determine when humans 
or machines should intervene in spe-
cific sensing and computing tasks. For 

example, allocating a large number 
of humans or machines to take mea-
surements at the same time in a given 
region may result in energy waste and 
network congestion. Moreover, when 
the contributed data are abundant, 
there may exist less useful informa-
tion in the data measured by humans 
and machines simultaneously. 

On the other hand, designing how 
humans and machines participate and 
collaborate is also important. In terms 
of computing tasks, it is obvious that 
machines have advantages over hu-
mans. For context awareness, however, 
humans are good at giving more subjec-
tive emotion recognition and synthetic 
interpretation based on practical expe-
rience or expert knowledge. Therefore, 
the integration of human and machine 
intelligence requires appropriate and 

Ubiquitous Noise Sensing

Input Data
Data

Preprocessing

Sound Analysis

Knowledge Mining

Decision Making

Big Data

Machine Learning

Ub
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FIGURE 7 – The basic process of data-driven sound analytics. (Source of icon images: Flaticon; used with permission.)

Identifying participants’ activities not only helps  
with inferring their intentions but also facilitates  
user data assessment.
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optimized design from three fundamen-
tal perspectives: data, algorithms, and 
decision making.

Suggestions for Future Work
Finally, three research projects that 
we are currently conducting are pre-
sented. We hope more investigators 
will be interested in these directions 
and promote the development of IIoT-
based noise mapping together.

Passive Event-Triggered  
Noise Monitoring
In many cases, acoustic sensor nodes 
are not uniformly deployed, which re-
sults in low-density sensing regions. 
The event-triggered sensing system, 
thus, is expected to achieve rapid 
effective responsiveness and a long 
network lifetime [46]. Such systems 
have been used in video surveillance 
[47], structural health monitoring 
[48], and so on. The basic idea is to 
use a low-power sensor for coarse 
event detection and then trigger the 
main sensors for high-precision moni-
toring if the return value is above the 
predefined threshold. Surprisingly, 
an event-triggered sensing system for 
noise-mapping applications has not 
been proposed in the literature so far.

More importantly, we propose a 
new kind of event-triggered noise-
sensing system that exploits the na-
ture of sound energy, which is shown 
in Figure 6(a). Differing from traditional 
active event-triggered sensing systems 
that use low-power sensor as a sentry, 
a sound energy-harvesting circuit is 
designed as a passive sentry to trig-
ger the main node when sound energy 
is detected. It is worth noting that the 
harvested sound energy might be very 
tiny, which is not enough to directly 
power the main node, but it is able 
to trigger a load switch (e.g., met-
al–oxide–semiconductor field-effect 
transistor) from OFF to ON [49], [50]. 
When the main node is activated, it 

can either estimate the sound using a 
model or perform noise measurement 
using high-precision loudness sensors.

Machine Learning-Based  
Adaptive Sensing
The A-weighted equivalent continu-
ous sound-pressure level through a 
time ( L TAeq, ) is a common descriptor 
to measure environmental noise. It is 
defined in decibels as
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where T is the specified time (e.g., 
15 min), the reference sound pressure 
(p0) is 20 μPa, and p(t) denotes the 
instantaneous pressure level of the 
noise. Simply, the integral equation 
could be discretized by averaging the 
total individual event exposures. In 
(2), the reference time interval (Tref) 
can be considered as the sampling in-
terval of the sensor node. Therefore, 
the total samples (n) of individual 
sound exposure levels (LSEL) are equal 
to /T Tref  over the specified time:
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For example, when the sampling in-
terval is set to 2 s, the sensor node 
needs to perform the task 450 times in 
15 min. Then, if the sensor node mea-
sures sound noise every 20 s, only 45 
samples are needed at the same time.

An interesting fact presented in 
[38] is that root-mean-square errors of 
equivalent continuous sound-pressure 
level over 15 min with different sam-
ple intervals are all within 2.5 dB in a 
classroom of the university, even when 
the sample number is decreased to 
five times. The correlation of environ-
mental noise gives us hope that the en-
ergy consumption of noise sensing can 
be reduced sharply using a machine 
learning-based adaptive sampling 

mechanism. As shown in Figure 6(b), 
a machine learning module [51] can 
be adapted on the edge node to train 
a decision agent, which outputs the 
optimal value of the sampling interval 
based on the present noise situation, 
energy level, and network topology re-
ported from the WASN.

AI-Assisted Multi-Physical-Layer, 
Multiprotocol Transmission
This work is conducted to cope with 
both the wireless coexistence problem 
and heterogeneous sensing issue. Cur-
rently, the development trend of com-
modity IoT platforms is from a single-
physical-layer (PHY), single-protocol 
supporting platform to a multi-PHY, 
multiprotocol supporting platform [52]. 
For example, both the Nordic Semicon-
ductor nRF52840 system on chip (SoC) 
and Texas Instruments CC2652R mi-
crocontroller are able to support Blue-
tooth, IEEE 802.15.4, and proprietary 
2.4-GHz stacks. The Wireless Gecko 
SoC from Silicon Labs can also be dy-
namically configured for multi-PHY and 
multiprotocol wireless connectivity.

This promising property could be 
exploited for flexible wireless multi-
media transmission in noise-mapping 
applications. As shown in Figure 6(c), 
the basic idea is that the acoustic sen-
sor nodes first autonomously get an 
understanding of the wireless coex-
istence environment that is present, 
and then the trained AI engine adap-
tively configures the PHY layer and 
medium access control layer based on 
the sensed information [53], such as 
the bit error, received signal strength 
indicator, link quality indicator, and 
temporal and spectral patterns.

Conclusion
This article first provides background 
on noise mapping by describing the 
three types of noise pollution; their ad-
verse effects on humans, animals, and 
the environment; and the motivation for 
noise mapping. Then, a comprehensive 
overview of noise mapping is conducted, 
which includes the working principles of 
SLM-based and computational model-
based noise-mapping techniques, their 
limitations, and expectations for next-
generation noise mapping. 

With fully utilized human–machine collaboration and 
intelligence, large-scale noise sensing and decision 
making are made easier. 
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To achieve such a blueprint, the po-
tential role of the IIoT for next-genera-
tion noise mapping in industrial parks is 
explored, which includes collaborative 
sensing, computing, and intelligence, 
followed by potential applications, 
such as machine health monitoring, 
intruder alarm systems, and an ambi-
ent sound-energy map. Moreover, five 
fundamental issues are discussed, 
including energy-efficient sensing, 
noise and positioning data quality, flex-
ible wireless multimedia transmission, 
data-driven sound analytics, and hu-
man–machine intelligence. Finally, pas-
sive event-triggered noise monitoring; 
machine learning-based adaptive sens-
ing; and AI-assisted multi-PHY, multi-
protocol transmission are presented as 
future work suggestions. We hope this 
article could open up new research op-
portunities to investigators in the IEEE 
Industrial Electronics Society. 
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