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Abstract—Federated Learning is a promising technique that
facilitates cloud-edge-terminal collaboration in Artificial Intelli-
gence of Things (AIoT). It will enable model training without
centralizing data, addressing privacy and security concerns.
However, when applied to AIoT, this technique faces several
challenges, such as low communication efficiency among ter-
minal devices, edges, and cloud platforms. In this paper, we
propose a novel approach called QuAsyncFL, which combines
asynchronous federated learning with an unbiased nonuniform
quantizer to address the issue of low communication efficiency.
Moreover, we provide a detailed theoretical analysis of conver-
gence with quantized gradients proving that the model could
converge to a certain bound. Our experiments demonstrate
that QuAsyncFL outperforms the original approach, achieving
significant improvements in terms of communication efficiency.
The research results represent a further step towards developing
cloud-edge-terminal collaboration enabled AIoT.

Index Terms—Artificial Intelligence of Things, Cloud-Edge-
Terminal Collaboration, Asynchronous Federated Learning,
Quantization, Communication Efficiency

I. INTRODUCTION

Artificial Intelligence of Things (AIoT) [1] is an emerging
technology that has recently captured considerable attention.
It leverages the capabilities of Artificial Intelligence (AI) and
the IoT to develop more intelligent and efficient network
systems that can automate tasks and improve decision-making
processes. In AIoT systems, AI algorithms are used to analyze
and interpret the massive amount of data generated by IoT
devices, resulting in more accurate predictions, faster response
times, and improved system performance [2]. AIoT has nu-
merous potential applications, such as smart cities [3] and
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smart agriculture [4], [5]. Therefore, it is anticipated to be
a promising paradigm that has the potential to solve complex
problems in various domains and revolutionize our society.

While AIoT is promising, the development is still in its
early stages, and there are several challenges that need to
be addressed for reaching its full potential through cloud-
edge-terminal collaboration [6]. One of the primary challenges
is data privacy and security. With the increasing volume
and variety of data exchanging among cloud, edge, and IoT
devices, ensuring the privacy and security of this data is crucial
for the success of AIoT. The use of AI algorithms to analyze
and interpret this data further highlights the need for secure
and private data management. In addition, as more devices are
connected to AIoT in cloud-edge-terminal collaboration archi-
tecture, efficient communication of the huge traffic is essential
for the widespread adoption of AIoT. Moreover, the lack
of interoperability and transparency between heterogeneous
networks is another challenge that limits the integration and
sharing of data in cloud-edge-terminal collaboration enabled
AIoT, ultimately reducing its benefits.

Federated Learning [7] is expected to be a key enabler
for cloud-edge-terminal collaboration enabled AIoT. This ap-
proach leverages cloud platforms to provide the infrastructure
for storing and processing large volumes of data, while edge
computing enables processing closer to the source of the
data. Terminal IoT devices deliver the end-user interface and
contribute to the training of AI models. In this way, federated
learning allows for the model training of AIoT without cen-
tralizing data. Instead, data remains on IoT devices, and the
models are trained locally on them. Only the model updates
are shared with the edge and cloud. This approach provides
many benefits [8], including increased privacy [9], scalability,
and efficiency, to address the abovementioned challenges.

To date, numerous studies have been conducted on federated
learning, which can be categorized based on the distribution
of data into three types: horizontal federated learning, vertical
federated learning, and federated transfer learning. Horizontal
federated learning [10] is suitable for datasets with a large
overlap in features but few samples, while vertical federated
learning [11] is applicable for datasets with many samples that
share the same data identity but differ in feature space. Fed-
erated transfer learning [12] is useful when datasets differ not
only in samples but also in feature space. On the other hand,
federated learning can be categorized based on timeliness into
two types: synchronous federated learning and asynchronous
federated learning. Synchronous federated learning [13] means
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that participating devices synchronize with each other to
update models and is suitable for low network latency and
high bandwidth. Asynchronous federated learning [14] al-
lows participating devices to update models independently
and asynchronously, making it beneficial for high network
latencies and bandwidth constraints. Asynchronous federated
learning can also be advantageous for large-scale networks
where synchronization of all devices can cause slower training
times and network congestion.

In this paper, our focus is on asynchronous federated
learning, which is more suitable for cloud-edge-terminal col-
laboration enabled AIoT. While it offers many advantages
over synchronous federated learning, there are still many
open issues to be addressed. One of its primary limitations
is slower convergence of the model due to the potential
for stale gradients. IoT devices may update the model with
outdated information, leading to reduced accuracy and slower
convergence. The combination of QuAsyncFL and cloud-edge
collaboration can not only effectively improve convergence
rate and communication efficiency, but also enable every
device and its data in the IoT to participate in the learning of
the information update. Therefore, the purpose of this study
is to solve the limitations of slow convergence and untimely
gradient update. Our specific contributions are summarized as
follows:

• We propose QuAsyncFL, a new Asynchronous Federated
Learning approach with Quantization for cloud-edge-
terminal collaboration enabled AIoT. We adopt a new
quantizer for natural compression to quantize the local
gradients, where the quantizer is unbiased and nonuni-
form. The communication rounds can be reduced by
quantizing the local gradients.

• We provide a detailed theoretical analysis on convergence
speed. By utilizing the properties of convex functions and
the unbiased and variance bounded of the quantizer, we
prove that QuAsyncFL is convergent. As the number of
iterations of the local computation increases, the upper
bound of convergence becomes tighter.

• We conduct extensive performance evaluations of
QuAsyncFL, demonstrating significant improvements
over the original asynchronous federated learning and
verifying the impact of quantification levels on commu-
nication rounds.

The remainder of this paper is organized as follows. In
Section II, we present the system model. Next, we describe the
detail design of the proposed QuAsyncFL method with theo-
retical analysis in Section III. Then, we evaluate QuAsyncFL’s
performance in Section IV. After reviewing the related work
in Section V, we conclude our paper in Section VI, along with
a discussion on future work.

II. SYSTEM MODEL

This section discusses the system model in terms of network
architecture, asynchronous federated learning, and gradient
quantization.

Fig. 1. Network architecture for AIoT with cloud-edge-terminal collaboration.

A. Network Architecture

This work considers a typical network architecture for AIoT,
enabled by cloud-edge-terminal collaboration. The architecture
is illustrated in Fig. 1, which consists of three main layers: the
terminal layer, the edge layer, and the cloud layer.

The terminal layer comprises various smart devices, such as
sensor nodes, smartphones, and computers, that have the dual
responsibility of interacting with the physical world through
sensing and actuation and training machine learning models.
The edge layer is responsible for collecting and preprocessing
data from the terminal devices and transmitting it to the cloud
for further analysis. This layer typically includes edge servers,
gateways, and base stations with more robust computing and
storage capabilities for machine learning model training.

The cloud layer is responsible for storing and processing
vast amounts of data generated by both the edge and terminal
devices. It typically comprises a cloud computing platform,
such as Amazon Web Services (AWS), Microsoft Azure, or
Google Cloud Platform (GCP), that offers a range of services,
including data storage, compute resources, and machine learn-
ing tools. Furthermore, the cloud layer orchestrates the training
process and aggregates the model updates from the edge and
terminal devices to build global model.

Finally, this architecture enables a variety of smart applica-
tions, such as intelligent noise mapping [15] and sustainable
digital agriculture [16], [17], among others, by leveraging the
combined capabilities of the terminal, edge, and cloud layers.

B. Asynchronous Federated Learning

In this study, we explore a federated learning scenario
involving N clients and a central server. In this context, clients
refer to smart devices at the terminal layer, while the central
server represents a cloud computing platform in the above
network architecture. It should be noted that edge devices
can be classified as either clients or central servers. Thus, the
optimization goal of federated learning is to minimize the loss
function, which can be formulated as follows:
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Fig. 2. Work procedure of asynchronous federated learning.

min
w∈Rd

F (w) =

∑N
i=1 DiFi(w)

D
(1)

where F (·) is the global loss function, Fi(·) is the local loss
function, and D =

∑N
i=1 Di is the total datasets of all the

clients.
Synchronous federated learning requires the central server

to wait for all client nodes to complete local stochastic gra-
dient descent (SGD) before performing the subsequent global
parameter aggregation step [18]. As a result, communication
efficiency is significantly reduced, and local devices may expe-
rience interruptions or long computing times, causing signifi-
cant delays. To address these issues, we choose asynchronous
federated learning, which enhances the flexibility of federated
learning in cloud-edge-terminal collaboration enabled AIoT.

Specifically, we consider the typical work procedure of
asynchronous federated learning [19], [20], as shown in Fig. 2.
All participating clients independently perform their training
process using their local data. Once a client has completed
its local training for a predetermined number of epochs or
iterations, it sends its updated model parameters to the central
server, without waiting for other clients to complete their local
training. At the central server side, it also does not need to wait
for all clients to send their model updates before aggregating
them, and can start performing the updates as soon as any of
them arrives. After that, a new global model is calculated, and
sent back to participating clients to update their local models.

C. Gradient Quantization

Gradient quantization is a technique used to compress multi-
bit single-precision floating-point numbers into finite bits.
Studies have shown that quantizing gradients can effectively
reduce transmission bandwidth pressure and accelerate model
training in SGD training of deep neural networks. The trans-
mission framework model for this technique is illustrated in
Fig. 3. After each iteration of gradient descent, the algorithm
encodes and quantizes the gradient parameters, which are then
transmitted to the next machine. In our work, the local clients
transmit the quantized model parameters to the central server.
On the server, the quantized parameters are decoded and used
for global model aggregation.

Fig. 3. Transmission framework of quantization stochastic gradient descent.

A low-precision quantizer for natural compression [21] is
chosen for gradient quantization of local parameters. The
quantizer is defined as:

Q(wi) = ∥w∥2sgn(wi)Ci(wi), (2)

where

sgn(wi) =

{
1, wi > 0,

−1, wi ≤ 0.
(3)

and

Ci(wi) =

{
2⌊log2 |wi|⌋, p(wi),

2⌈log2 |wi|⌉, 1− p(wi).
(4)

where p(wi) =
2⌈log2 |wi|⌉−|wi|

2⌊log2 |wi|⌋
.

In multi-node communication transmission frameworks like
federated learning, gradient quantization is a crucial to main-
tain the accuracy of the model while accelerating the model
training speed. By compressing the gradients, it reduces the
communication overhead between clients, that is essential for
efficient and scalable distributed optimization.

III. QUASYNCFL DESIGN

Building upon the system model discussed in the pre-
vious section, this section presents our proposed approach,
QuAsyncFL, which is illustrated below.

A. QuAsyncFL

Similar to existing federated learning methods, the optimiza-
tion goal of our proposed approach is to minimize the global
loss function within a limited number of iterations and param-
eters. Specifically, we use stochastic gradient descent (SGD) to
update the local model iteratively. To prevent overfitting during
local model training, we employ gradient regularization. The
parameters for the local single SGD iterative update on the
i-th device are updated as follows:

wi(τ) = wi(τ − 1)− η∇Gi(wi(τ − 1)), (5)

where Gi(wi(τ)) = Fi(wi(τ)) +
µ
2 ∥wi(τ) − wi(0)∥22 and

G(w) =
∑n

i=1
DiGi(w)

D , n ∈ {1, . . . , N}.
The global update method for asynchronous federated learn-

ing with quantization proposed here is described as follows:

w(t) = (1− α)w(t− 1) + αQ(wnew). (6)

We complete the global aggregation of each round by
assigning weights to the parameters generated by the previous
aggregation round and the new parameters uploaded by local
users, with the specific weights determined by different values
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of α. Notably, Q(wnew) refers to the parameters that have been
quantized by natural compression in the local model.

Algorithm 1 Proposed Asynchronous Federated Learning with
Quantization (QuAsyncFL)

Input: α ∈ (0, 1)
Initialize w0

Server Update:
for global aggregation t = 1, 2, . . . , k, . . . ,K do

Receive (Q(wnew), τ) from the computing nodes
Update w(t)← (1− α)w(t− 1) + αQ(wnew)

Clients Update:
for each client i = 1, 2, . . . , N in parallel do

Receive (w(t), t) from the server
kτ ← t,wi(kτ)← w(t)
for local iteration h = 1, 2, . . . ,Hi

kτ do
Randomly sample zikτ,h from Di

Update wi(kτ + h) ← wi(kτ + h − 1) −
η∇Gi(wi(kτ + h− 1); zikτ,h)

Q(wnew)←
∑d

j=1 ∥wi(kτ+h)∥2sgn(wi,j(kτ+
h))Cj(wi,j(kτ + h))

Transmit (Q(wnew), τ) to the server

The proposed QuAsyncFL design is a method that combines
asynchronous federated learning and gradient quantization,
with the addition of a gradient quantization step for local
model parameters that does not compromise the flexibility of
the federated learning model framework.

B. Quantization and Compression

In this paper, we explore a method called natural
compression for quantizing parameters, which was discussed
in Section II. The quantizer Q(·) provides an unbiased
estimate, and the variance and L2-norm of the parameter
exhibit a positive correlation, as demonstrated in the definition
of [21]:

Lemma 1: The quantization function satisfies the following
properties:

(1)E[Q(w)] = w
(2)E[∥Q(w)− w∥22] ≤ m∥w∥22,
(3)E[∥Q(w)∥22 ≤ (1 +m)∥w∥22,

and m= 1
8 + min(

√
d

2s−1 ,
d

22(s−1) ), according to the Theorem 7
in [21].

For the sake of computational convenience, we propose two
assumptions:

Assumption 1: Fi(w) is convex, and F has Lipschitz
continuous gradients with constant ρ ≥ 0: Fi(w)− Fi(w′) ≤
⟨∇Fi(w′),w− w′⟩+ ρ

2∥w− w′∥22.
Assumption 2: F and G is a differentiable function,∀w ∈

Rd,∥∇Fi(w)∥2 ≤ V1,∥∇Gi(w)∥2 ≤ V2, where V1 and V2 is
a constant.

By applying natural compression to the local model, we
observe a gap between the parameters from two consecutive
rounds of global aggregation.

Lemma 2: We assume that when t = kτ , the local device
sends its parameter to the base station. If the i-th device
receives the global parameter and updates h rounds, and
h ∈ [0, H], H ∈ [Hmin, Hmax], we have

E[F (wi(kτ))− F (w(t− 1))]

≤ 1

2
ρHmaxA

2 +
√
V1A+

3

2
HmaxB

2 +
√
V1B+

3

2
ρHmaxCw2

im + (1 + α)
√
V1wim,

(7)

where A=ηHmax

√
V2, B=(1 − α)wm, C=(1 + α2(1 + m)),

wim=max{∥wi(kτ + h)∥2} and wm=max{∥w(t)∥2}, Hmax

is the max local iteration in the clients, k is the index of
aggregation.

Proof: See Appendix A.

C. Convergence Analysis

To facilitate convenient convergence analysis and derivation,
we derive several related lemmas and theorems. From the
Assumption 1, F is a convex function, then we have

Lemma 3: Fi(w),Gi(w) and G(w) is also convex,ρ-
Lipschitz and β-smooth.

Lemma 4: Suppose F satisfies Assumption 1 and 2, then
the bound of initial loss on wi(kτ + h) is given by

F (wi(kτ + h))− F (wi(kτ + h− 1))

≤ −ηnDmax

D

n∑
i=1

∥∇Fi(wi(kτ + h− 1))∥22+

1

2
µη2H2

maxV2 +
1

2
η2ρV2.

(8)

Proof: See Appendix B.
Based on the lemma and assumption, we can derive several

theorems for convergence analysis of QuAsyncFL. Thus, we
need to derive a definite upper bound for the loss function of
two consecutive rounds, which is given by

Theorem 1: The upper bound of the gap is given as follows

E[F (w(t))− F (w(t− 1))]

≤ −αη
nDmax

D

H−1∑
h

n∑
i=1

∥∇Fi(wi(kτ + h))∥22 +
1

2
η2αρV2+

1

2
αρHmaxA

2 + α
√
V1A+ 3αB2(

1

2
Hmax + µ) + α

√
V1B+

αwim((1 + α)
√
V1 + µm+

3

2
HmaxC) + 3αµCw2

im.

(9)

Proof: See Appendix C.
By utilizing the upper bound discussed in Theorem 1, we

establish a critical point of convergence.
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Theorem 2: QuAsyncFL converges to a critical point:

1∑K
k=0 Hk

K∑
k=1

E[∥∇F (w(t))∥22]

≤ O(
δ

ϵH2
min

) +O(
1

ϵH3
min

) +O(
δ3

ϵH4
min

)+

O(
1

ϵH5
min

) +O(
δ

ϵH6
min

),

(10)

where δ = Hmax

Hmin
, ϵ = nDmax

D , n is the number of users partici-
pating in the current round of aggregation and n ∈ {1, . . . , N},
K is the total rounds of aggregation, Hk is the rounds of local
training after the (k − 1)-th aggregation.

Proof: See Appendix D.
Through the critical point in Theorem 2, we can find that

the algorithm has a clear convergence boundary, that is, as the
number of iterations increases, the convergence boundary of
the algorithm tends to 0, and the loss function will be infinitely
close to the minimum value, which means the algorithm can
reach a convergent state.

IV. PERFORMANCE EVALUATION

This section presents the performance evaluation of
QuAsyncFL, which was conducted using the PyTorch-based
framework provided by FedLab [22]. The experiment was
conducted using an ASUS MARS15 laptop running Windows
10, while the program was executed on Matpool with an
NVIDIA Tesla K80, as depicted in Fig. 4.

We employed the CNN model on the clients and utilized the
MNIST dataset [23] as the training set. The relevant parameter
settings of the CNN model are displayed in Table I. We aslo
set the number of users to 100 and the batch size to 100. For
local training, we trained each client’s model for 5 epochs with
a learning rate of 0.02 using stochastic gradient descent. The
loss function we used was the cross-entropy loss function.

(a) Laptop (b) Program running interface

Fig. 4. Snapshot of experimental environment for performance evaluation.

TABLE I
THE RELEVANT PARAMETERS SETTING

Type Dimension Size Step Size Activation
Input 1 - - -
Conv 32 5*5 - -

MaxPool 32 2*2 1 -
Conv 64 5*5 - -

MaxPool 64 2*2 1 -
Linear 512 - - ReLU
Linear 10 - - -

(a) Optimal loss (b) Optimal accuracy

Fig. 5. The results of optimal values by testing α from 0.1 to 0.9 at the non-
quantization and the quantization levels s of 1, 2, 4, 8, and 16, respectively.

(a) Mean loss (b) Mean accuracy

Fig. 6. The results of mean values by testing α from 0.1 to 0.9 at the non-
quantization and the quantization levels s of 1, 2, 4, 8, and 16, respectively.

A. Parameters Adjustment

First of all, we searched for the optimal value of α by
gradually testing values from 0.1 to 0.9. Results from Fig. 5
show that model performance was unsatisfactory before α was
set to 0.4. Even after the same number of communications,
the loss function’s value continued to converge at a higher
level, and the model’s accuracy was consistently poor. While
model performance improved after 0.4, QuAsyncFL with s=1
showed training performance rebounding after 0.6, indicating
overfitting. For example, when α=0.7, the mean accuracy
decreases by 10% compared to 0.6. Meanwhile, results from
Fig. 6 show that the mean loss trended downward and the mean
accuracy upward after α was set to 0.2, but rebounded for α
values beyond 0.6. Therefore, model training performance was
best when α was set to 0.4 or 0.5. Based on these results, we
chose to use α values of 0.4 and 0.5 for preliminary training.

B. Communication Efficiency

After that, we conducted an evaluation of the communica-
tion efficiency of asynchronous federated learning, comparing
it with and without quantization. The results demonstrate that
higher quantization levels lead to fewer communication rounds
required for convergence. As shown in Fig. 7, the convergence
rate of QuAsyncFL with s=1 is 75% faster than the non-
quantization method. However, as the quantization level de-
creases, the number of communication rounds increases, which
requires more parameter aggregation and transmission during
training. The convergence trend with a higher quantization
level is similar to that of the non-quantization framework.
Therefore, there exists an upper bound for s in the quantization
process.
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(a) α=0.4 (b) α=0.5

Fig. 7. The results of loss versus communication rounds.

(a) α=0.4 (b) α=0.5

Fig. 8. The results of accuracy versus communication rounds.

C. Accuracy

Meanwhile, we also evaluated the accuracy of asynchronous
federated learning with and without quantization. The results
showed some interesting observations, as demonstrated in
Fig. 8. We found that QuAsyncFL with s=1 model converges
very fast in a defined number of communications, with the ac-
curacy reaching 12.5% higher than the non-quantization model
around the 50th aggregation. However, as the quantization
level increases, the overfitting problem becomes more promi-
nent. Due to the large gradient, the model reaches the optimal
value quickly. However, as the training time increases, the
model becomes over-trained, and the original regularization
method is not sufficient to reduce the risk of overfitting. As a
result, the performance of QuAsyncFL with s=1 model is not
as good as the non-quantization model or QuAsyncFL with a
lower quantization level.

D. Performance under Different Weights

Finally, we discuss the impact of different aggregation
weights on the performance of QuAsyncFL. By comparing
the results in Fig. 7 and Fig. 8, we found that different
aggregation weights (i.e., different α values) can significantly
affect the convergence rate. When s=1 and s=2, there is
no significant difference in the convergence rate. However,
as the quantization level decreases, the impact of the ag-
gregation weight becomes more evident. For instance, when
s=4, QuAsyncFL with α=0.5 is 1.8x faster than QuAsyncFL
with α=0.4. Similarly, the non-quantization model with α=0.5
converges 1.71x faster than with α=0.4. It is worth noting that
using a higher aggregation weight α may increase the risk of
overfitting during the training process. Therefore, the choice
of aggregation weight in QuAsyncFL should be based on the
specific quantization level used.

V. RELATED WORK

This section analyses the related work of our study with
respect to the following three domains and Table II.

Cloud-Edge-Terminal Collaboration. It has emerged as a
promising approach for achieving efficient and scalable IoT
systems. In recent years, a large and growing body of liter-
ature has investigated this area [24], [25]. For example, one
advancement is the use of a blockchain-assisted collective Q-
learning approach for networking integrated cloud-edge-end in
IoT [26]. Another promising approach is the use of federated
learning frameworks for distributed deep neural networks
over cloud, edge, and end devices [27]. Several works have
also proposed cloud-edge-terminal collaboration for specific
applications such as temperature measurement in COVID-
19 prevention [28], wind turbine damage detection [29],
virtual reality [30], and more [31], [32]. These applications
demonstrate the potential of cloud-edge-end collaboration for
improving efficiency and reducing costs in various domains.

While there is a growing interest in this topic, there is still
a need for research on the trade-offs between computational
efficiency, network bandwidth, and data privacy in cloud-edge-
end collaboration. Our work focuses on asynchronous feder-
ated learning, which enables efficient collaborative learning
without the need for centralized data storage or processing,
thereby enabling privacy preservation and reducing network
latency. We select an aggregation model with better perfor-
mance by adjusting the aggregated weight in aggregation
to improve flexibility of federated learning. Simultaneously,
the natural compression method is combined to quantize the
local parameters to improve the communication efficiency of
asynchronous federated learning. This enables asynchronous
federated learning to effectively protect data security in AIoT
applications, while also improving the flexibility and efficiency
of communication.

Asynchronous Federated Learning. This direction has be-
come increasingly popular in recent years due to its ability to
handle large-scale and heterogeneous datasets [33]. A signifi-
cant amount of literature has been published, with a focus on
its applications, mechanisms, and performance enhancements.
For example, various studies have investigated the potential
of asynchronous federated learning in edge computing [34],
IoT [35], vehicular networks [36], fault diagnosis [37], and
critical energy infrastructure [38]. Adaptive methods have been
proposed for asynchronous federated learning in resource-
constrained edge computing [39], while scheduling and ag-
gregation methods have been developed to improve its perfor-
mance over wireless networks [40].

Notably, gradient quantization has been recently explored
in a few studies to enhance the performance of federated
learning. For instance, adaptive gradient quantization has
been proposed to achieve communication-efficient federated
learning in heterogeneous edge devices [41]. A method was
proposed to improve the model prediction accuracy with the
system latency guarantee and gradient quantization in feder-
ated learning [42]. An asynchronous federated learning method
has been presented to leverage majority voting to combine
quantized model updates from different edge devices [43].
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TABLE II
THE REFERENCE OF RELATED WORK

Reference Cloud-Edge-Terminal
Collaboration

Gradient
Quantization

Synchronous
Federated Learning

Asynchronous
Federated Learning

[24]–[26], [28]–[32] ! - - -
[27] ! - - !

[33]–[40] - ! - -
[41], [42], [44], [45], [47] - - ! !

[43] - ! ! -
[46], [48]–[50] - - ! -

Our work ! ! - !

Moreover, lazily quantized gradient [44] and heterogeneous
quantization [45] have been proposed for dynamic aggregation
in federated learning. However, our study differs from these
works in several ways. Firstly, we introduce an innovative
approach by adjusting the aggregated weight in aggregation to
select an aggregation model with better performance, thereby
improving the flexibility of federated learning. Secondly, we
combine the natural compression method with our approach to
quantize the local parameters, which significantly improves the
communication efficiency of asynchronous federated learning.
As a result, our proposed approach effectively protects data
security in AIoT applications while improving the flexibility
and efficiency of communication.

Gradient Quantization. Finally, we provide a brief overview
of the related work on gradient quantization. This technique
has been successfully applied in various domains such as dis-
tributed deep learning [46], mobile and edge computing [47],
natural language processing [48], and computer vision [49].
Gradient quantization is particularly useful in reducing the
memory footprint and communication overhead during dis-
tributed training [50], making it possible to train larger models
in distributed environments.

In our study, we take advantage of a low-precision quantizer
to perform gradient quantization of local parameters. By
doing so, we improve the efficiency of cloud-edge-terminal
collaboration for AIoT applications, where resources are often
limited. This allows us to take full advantage of the distributed
computing capabilities and improve the efficiency of services.

VI. CONCLUSION AND FUTURE WORK

Conclusion. In this paper, we proposed QuAsyncFL, a quan-
tized federated learning framework for improving the com-
munication efficiency of the system without reducing the
flexibility of asynchronous federated learning. Our focus is on
applying this approach to cloud-edge-terminal collaboration
enabled AIoT. QuAsyncFL adopts weight aggregation for the
model aggregation method of asynchronous federated learning
and combines the natural compression method for quantiz-
ing the local parameters, thereby improving the communica-
tion efficiency of distributed learning with limited resources.
Our experiments present the convergence difference between
QuAsyncFL with asynchronous federated learning and show
that different quantization levels have a certain impact on the
convergence of the model.

Limitations and Future Work. While QuAsyncFL improves
communication efficiency, it still has some limitations. Quan-
tization inevitably brings quantization errors, which can be
more significant with greater quantization. In addition, in-
dividual clients may interrupt contact due to poor wireless
signal quality, which can impact service quality. To address
these issues, future work could investigate relevant factors
for improving communication efficiency without excessive
quantization error, explore other quantizers that can reduce
the generation of quantization error, or consider collaborative
learning to enable disconnected clients to still participate in
training. Other solutions could include introducing reference
factors in cloud-edge-terminal collaboration scenario to reduce
the probability of client disconnection.

APPENDIX A
PROOF OF LEMMA 2

For the convenience of calculation, we first derive the
upper bound of the L2-norm of the gap, where the gap
is the parameters of two consecutive rounds in the global
aggregation.

Assume that when t = kτ , the local device sends its parame-
ter to the server. If the i-th device receives the global parameter
and updates h rounds, and h ∈ [0, H],H ∈ [Hmin, Hmax], we
derive an upper bound with using Assumption 1 is given by

E[∥wi(kτ)− w(t− 1)∥22]
= E[∥wi(kτ)− wi(kτ + 1) + wi(kτ + 1)− wi(kτ + 2) + · · ·
+ wi(kτ +H − 1)− wi(kτ +H) + wi(kτ +H)− w(t− 1)∥22]
(a)

≤ E[Hmax∥wi(kτ)− wi(kτ + 1)∥22 +Hmax∥wi(kτ + 1)−
wi(kτ + 2)∥22 + · · ·+Hmax∥wi(kτ +H − 1)−
wi(kτ +H)∥22 +Hmax∥wi(kτ +H)− w(t− 1)∥22]
≤ H3

maxη
2V2 + E[Hmax∥wi(kτ +H)− w(t− 1)∥22]

= H3
maxη

2V2 +HmaxE[∥wi(kτ +H)− ((1− α)w(t− 2)+

αQ(wi(kτ +H)))∥22]
(a)

≤ H3
maxη

2V2 +HmaxE[3∥wi(kτ +H)∥22+
3∥αQ(wi(kτ +H))∥22 + 3∥(1− α)w(t− 2)∥22]
(b)

≤ H3
maxη

2V2 + 3HmaxE[∥wi(kτ +H)∥22 + α2(1+

m)∥wi(kτ +H)∥22 + (1− α)2∥w(t− 2)∥22]
≤ H3

maxη
2V2 + 3Hmax(1 + α2(1 +m))w2

im + 3Hmax(1− α)2w2
m,

(11)
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where the inequality (a) is based on ∥ΣN
i=1xi∥22 ≤

NΣN
i=1∥xi∥22, the inequality (b) is based on Lemma 1. With

the same. With the similar derivation, we also have

E[∥wi(kτ)− w(t− 1)∥2]
= E[∥wi(kτ)− wi(kτ + 1) + wi(kτ + 1)− wi(kτ + 2) + · · ·
+ wi(kτ +H − 1)− wi(kτ +H) + wi(kτ +H)− w(t− 1)∥2]
(c)

≤ E[∥wi(kτ)wi(kτ + 1)∥2 + · · ·+ ∥wi(kτ +H)− w(t− 1)∥2]
≤ Hmaxη

√
V2 + E[∥wi(kτ +H)− (1− α)w(t− 2)−

αQ(wi(kτ +H))∥2]
(c)

≤ Hmaxη
√
V2 + E[∥wi(kτ +H)∥2 + ∥(1− α)w(t− 2)∥2+

∥αQ(wi(kτ +H))∥2]
= Hmaxη

√
V2 + [(1 + α)∥wi(kτ +H)∥2 + (1− α)∥w(t− 2)∥2]

≤ Hmaxη
√
V2 + (1 + α) wim + (1− α)wm,

(12)
where the inequality (c) is based on the triangle inequality,
wim=max{∥wi(kτ + h)∥2} and wm=max{∥w(t)∥2}. Using
(11) and (12), we can derive a gap between the parameters
from two consecutive global aggregations as follows

E[F (wi(kτ))− F (w(t− 1))]

≤ ⟨∇F (w(t− 1)),wi(kτ)− w(t− 1)⟩+ ρ

2
∥wi(kτ)− w(t− 1)∥22

≤ ∥∇F (w(t− 1))∥2∥wi(kτ)− w(t− 1)∥2 +
ρ

2
∥wi(kτ)− w(t− 1)∥22

≤
√
V1 (ηHmax

√
V2 + (1 + α)wim + (1− α)wm)+

ρ

2
Hmax(η

2H2
maxV2 + 3(1 + α2(1 +m))w2

im + 3(1− α)2w2
m)

=
1

2
ρHmaxA

2 +
√
V1A+

3

2
HmaxB

2 +
√
V1B +

3

2
ρHmaxCw2

im

+ (1 + α)
√
V1wim.

(13)
where A=ηHmax

√
V2, B=(1 − α)wm, C=(1 + α2(1 + m)).

This completes the proof.

APPENDIX B
PROOF OF LEMMA4

Similarly, with using hypothesis in the proof of Lemma 2,
Assumption 1 and 2, we derive an upper bound of initial loss
on wi(kτ + h) is given by

E[F (wi(kτ + h))− F (w∗)]

(d)

≤ E[G(wi(kτ + h))− F (w∗)]

= E[G(wi(kτ + h))−G(wi(kτ + h− 1))

+G(wi(kτ + h− 1))− F (w∗)],

(14)

where the inequality (d) follows G(wi(kτ+h)) = F (wi(kτ+
h))+ µ

2 ∥wi(kτ+h)−wi(kτ)∥22. With Assumption 1, we have

G(wi (kτ + h))−G(wi (kτ + h− 1))

≤ ⟨∇G(wi(kτ + h− 1)),wi(kτ + h)− wi(kτ + h− 1)⟩+
ρ

2
∥wi(kτ + h)− wi(kτ + h− 1)∥22
= ⟨∇G(wi(kτ + h− 1)),−η∇Gi(wi(kτ + h− 1))⟩+
ρ

2
η2∥∇Gi(wi(kτ + h− 1))∥22.

(15)

Rearrange the formula as follows:

⟨∇G(wi(kτ + h− 1)),∇Gi(wi(kτ + h− 1))⟩

=

〈
∇
∑n

i=1 DiGi(wi(kτ + h− 1))

D
,∇Gi(wi(kτ + h− 1))

〉
≤ nDmax

D

n∑
i=1

⟨∇Gi(wi(kτ + h− 1)),∇Gi(wi(kτ + h− 1))⟩

=
nDmax

D

n∑
i=1

∥∇Gi(wi(kτ + h− 1))∥22,

(16)
where k is the index of aggregation and Dmax is the largest
Di of all clients. According to the realation between G(w)
and F (w), we have nDmax

D

∑n
i=1 ∥∇Gi(wi(kτ +h−1))∥2 ≥

nDmax

D

∑n
i=1 ∥∇Fi(wi(kτ+h−1))∥2. Based on the inequality

(d) and (16), we get an inequality given by

− η
nDmax

D

n∑
i=1

∥∇Gi(wi(kτ + h− 1))∥22

≤ −ηnDmax

D

n∑
i=1

∥∇Fi(wi(kτ + h− 1))∥22.
(17)

By rearranging the (14), (15) and (17), we have:

E[F (wi (kτ + h))− F (w∗)]

≤ E[G(wi(kτ + h))−G(wi(kτ + h− 1))+

G(wi(kτ + h− 1))− F (w∗)]

≤ E[⟨∇G(wi(kτ + h− 1)),−η∇Gi(wi(kτ + h− 1))⟩+
η2ρ

2
∥∇Gi(wi(kτ + h− 1))∥22 +G(wi(kτ + h− 1))− F (w∗)]

= ⟨∇G(wi(kτ + h− 1)),−η∇Gi(wi(kτ + h− 1))⟩+
η2ρ

2
∥∇Gi(wi(kτ + h− 1))∥22 + F (wi(kτ + h− 1))+

µ

2
∥wi(kτ + h− 1)− wi(kτ)∥22 − F (w∗)

≤ F (wi(kτ + h− 1))− F (w∗) +
1

2
µη2H2

maxV2 +
η2ρ

2
V2−

η
nDmax

D

n∑
i=1

∥∇Fi(wi(kτ + h− 1))∥22.

(18)
By rearranging (18), we get an upper bound given by

F (wi(kτ + h))− F (wi(kτ + h− 1))

≤ −ηnDmax

D

n∑
i=1

∥∇Fi(wi(kτ + h− 1))∥22+

1

2
µη2H2

maxV2 +
1

2
η2ρV2.

(19)

This completes the proof.

APPENDIX C
PROOF OF THEOREM1

Using the above lemmas, we can gain a gap of the param-
eters of two consecutive rounds after aggregation. The upper
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bound of the gap is given as follows

E[F (w(t))− F (w(t− 1))]

≤ E[G(w(t))− F (w(t− 1))]

≤ E[(1− α)G(w(t− 1)) + αG(Q(wi(kτ +H))− F (w(t− 1))]

(e)
= E[−αF (w(t− 1)) + αG(Q(wi(kτ +H))]

= E[−αF (w(t− 1)) + αF (Q(wi(kτ +H))+
αµ

2
∥Q(wi(kτ +H))− w(t− 1)∥22]

= αE[−F (w(t− 1))− F (wi(kτ)) + F (wi(kτ))+

F (Q(wi(kτ +H))) +
µ

2
∥Q(wi(kτ +H))− wi(kτ +H)+

wi(kτ +H)− w(t− 1)∥22]
≤ αE[F (wi(kτ))− F (w(t− 1)) + F (Q(wi(kτ +H))−
F (wi(kτ)) + µ∥Q(wi(kτ +H))− wi(kτ +H)∥22+
µ∥wi(kτ +H)− w(t− 1)∥22]

≤ −αη
nDmax

D

H−1∑
h

n∑
i=1

∥∇Fi(wi(kτ + h))∥22 + αηHmax(
√
V1V2+

µ

2
H2

maxV2) + αw2
im(

3

2
ρHmax(1 + α2(1 +m)) + µ(m+ (1− α)2))

+ αw2
m(

3

2
ρHmax(1− α2) + µ(1− α)2) + α

√
V1((1 + α)wim+

(1− α)wm) +
1

2
η2αρHmaxV2(H

2
max + 1)

= −αη
nDmax

D

H−1∑
h

n∑
i=1

∥∇Fi(wi(kτ + h))∥22 +
1

2
η2αρV2+

1

2
αρHmaxA

2 + α
√
V1A+ 3αB2(

1

2
Hmax + µ) + α

√
V1B+

αwim((1 + α)
√
V1 + µm+

3

2
HmaxC) + 3αµCw2

im,

(20)
where equality (e) is based on G(w(t− 1)) = F (w(t− 1))−
µ
2 ∥w(t− 1)− w(t− 1)∥22. This completes the proof.

APPENDIX D
PROOF OF THEOREM2

From Theorem 2, we can get a critical point as follows

H−1∑
h

n∑
i=1

∥∇Fi(wi(kτ + h))∥22

≤ 1

αηϵ
[F (w(t))− F (w(t− 1))] +

1

ηϵ

√
V1(ηHmax

√
V2+

(1 + α)wim + (1− α)wm) +
1

2ηϵ
ρHmax(η

2H2
maxV2

+ 3(1 + α2(1 +m))w2
im + 3(1− α)2w2

m) +
1

2ϵ
ρηHmaxV2

+
1

2ϵ
αµH3

maxV2 +
1

ηϵ
µmw2

im +
1

ηϵ
µ((1 + α2(1 +m))w2

im

+ (1− α)2w2
m),

(21)
where ϵ = nDmax

D .
By rearranging (21), an upper bound of the critical point is

given by

1∑K
k=0 Hk

K∑
k=1

E[∥∇F (w(t))∥22]

≤ 1

ϵKHmin
(
1

αη
[F (w(0))− F (w(K))] +

1

η
(ηHmax

√
V2+

(1 + α)wim + (1− α)wm) +
1

2η
ρHmax(η

2H2
maxV2

+ 3(1 + α2(1 +m))w2
im + 3(1− α)2w2

m) +
1

2
ρηHmaxV2+

1

2
αµH3

maxV2 +
1

η
µmw2

im +
1

η
µ((1 + α2(1 +m))w2

im

+ (1− α)2w2
m)),

(22)
where K is the total rounds of aggregation, Hk is the rounds
of local training after the (k − 1)-th aggregation.

Taking K = H4
min,η = 1√

K
= 1

H2
min

,α = 1
Hmin

,δ =
Hmax

Hmin
, we have

1∑K
k=0 Hk

K∑
k=1

E[∥∇F (w(t))∥22]

≤ 1

ϵH2
min

[(F (w(0))− F (w(K))) +
3

2
δρw2

im +
3

2
ρw2

m]+

1

ϵH3
min

[
√
V1wim +

√
V1wm − 3ρw2

m +
1

2
V2 + µmw2

im+

µw2
im + µw2

im] +
1

ϵH4
min

[δ
√
V1V2 +

√
V1wim +

√
V1wm+

1

2
δ3ρV2 +

3

2
ρ(1 +m)w2

im +
3

2
δρw2

m − 2µw2
m]+

1

ϵH5
min

[µ(1 +m)w2
im + µw2

m] +
1

2ϵH6
min

δρV2

≤ O(
δ

ϵH2
min

) +O(
1

ϵH3
min

) +O(
δ3

ϵH4
min

)+

O(
1

ϵH5
min

) +O(
δ

ϵH6
min

).

(23)
Here we use O asymptotically upper bound: If there is a

constant n0, such that when n ≥ n0, there are f(n) > 0,
g(n) > 0, and limn→∞

f(n)
g(n) = 0, we have f(n) = O(g(n)).

Therefore, QuAsyncFL converges to a critical point:

1∑K
k=0 Hk

K∑
k=1

E[∥∇F (w(t))∥22]

≤ O(
δ

ϵH2
min

) +O(
1

ϵH3
min

) +O(
δ3

ϵH4
min

)+

O(
1

ϵH5
min

) +O(
δ

ϵH6
min

).

(24)

This completes the proof.
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